Displaying similar documents to “End-faithful spanning trees of countable graphs with prescribed sets of rays”

Spanning tree congestion of rook's graphs

Kyohei Kozawa, Yota Otachi (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.

Multi-faithful spanning trees of infinite graphs

Norbert Polat (2001)

Czechoslovak Mathematical Journal

Similarity:

For an end τ and a tree T of a graph G we denote respectively by m ( τ ) and m T ( τ ) the maximum numbers of pairwise disjoint rays of G and T belonging to τ , and we define t m ( τ ) : = min { m T ( τ ) T is a spanning tree of G } . In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function f mapping every end τ of G to a cardinal f ( τ ) such that t m ( τ ) f ( τ ) m ( τ ) , there exists a spanning tree T of G such that m T ( τ ) = f ( τ ) for every end τ of G .

2-placement of (p,q)-trees

Beata Orchel (2003)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (L,R;E) be a bipartite graph such that V(G) = L∪R, |L| = p and |R| = q. G is called (p,q)-tree if G is connected and |E(G)| = p+q-1. Let G = (L,R;E) and H = (L',R';E') be two (p,q)-tree. A bijection f:L ∪ R → L' ∪ R' is said to be a biplacement of G and H if f(L) = L' and f(x)f(y) ∉ E' for every edge xy of G. A biplacement of G and its copy is called 2-placement of G. A bipartite graph G is 2-placeable if G has a 2-placement. In this paper we give all (p,q)-trees...

A lower bound for the irredundance number of trees

Michael Poschen, Lutz Volkmann (2006)

Discussiones Mathematicae Graph Theory

Similarity:

Let ir(G) and γ(G) be the irredundance number and domination number of a graph G, respectively. The number of vertices and leaves of a graph G are denoted by n(G) and n₁(G). If T is a tree, then Lemańska [4] presented in 2004 the sharp lower bound γ(T) ≥ (n(T) + 2 - n₁(T))/3. In this paper we prove ir(T) ≥ (n(T) + 2 - n₁(T))/3. for an arbitrary tree T. Since γ(T) ≥ ir(T) is always valid, this inequality is an extension and improvement of...

On the tree graph of a connected graph

Ana Paulina Figueroa, Eduardo Rivera-Campo (2008)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph and C be a set of cycles of G. The tree graph of G defined by C, is the graph T(G,C) that has one vertex for each spanning tree of G, in which two trees T and T' are adjacent if their symmetric difference consists of two edges and the unique cycle contained in T ∪ T' is an element of C. We give a necessary and sufficient condition for this graph to be connected for the case where every edge of G belongs to at most two cycles in C.