The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The basis number of some special non-planar graphs”

An upper bound on the basis number of the powers of the complete graphs

Salar Y. Alsardary (2001)

Czechoslovak Mathematical Journal

Similarity:

The basis number of a graph G is defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis number is 2 . Schmeichel proved that the basis number of the complete graph K n is at most 3 . We generalize the result of Schmeichel by showing that the basis number of the d -th power of K n is at most 2 d + 1 .

On ( 4 , 1 ) * -choosability of toroidal graphs without chordal 7-cycles and adjacent 4-cycles

Haihui Zhang (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A graph G is called ( k , d ) * -choosable if for every list assignment L satisfying | L ( v ) | = k for all v V ( G ) , there is an L -coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. In this paper, it is proved that every toroidal graph without chordal 7-cycles and adjacent 4-cycles is ( 4 , 1 ) * -choosable.

A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs

Wojciech Wideł (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph on n vertices and let H be a given graph. We say that G is pancyclic, if it contains cycles of all lengths from 3 up to n, and that it is H-f1-heavy, if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies [...] min⁡dG(u),dG(v)≥n+12 min { d G ( u ) , d G ( v ) } n + 1 2 . In this paper we prove that every 2-connected K1,3, P5-f1-heavy graph is pancyclic. This result completes the answer to the problem of finding f1-heavy pairs of subgraphs implying...

Join of two graphs admits a nowhere-zero 3 -flow

Saieed Akbari, Maryam Aliakbarpour, Naryam Ghanbari, Emisa Nategh, Hossein Shahmohamad (2014)

Czechoslovak Mathematical Journal

Similarity:

Let G be a graph, and λ the smallest integer for which G has a nowhere-zero λ -flow, i.e., an integer λ for which G admits a nowhere-zero λ -flow, but it does not admit a ( λ - 1 ) -flow. We denote the minimum flow number of G by Λ ( G ) . In this paper we show that if G and H are two arbitrary graphs and G has no isolated vertex, then Λ ( G H ) 3 except two cases: (i) One of the graphs G and H is K 2 and the other is 1 -regular. (ii) H = K 1 and G is a graph with at least one isolated vertex or a component whose every...