Displaying similar documents to “Boundary value problems with compatible boundary conditions”

Existence Theorems for a Fourth Order Boundary Value Problem

A. El-Haffaf (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

This paper treats the question of the existence of solutions of a fourth order boundary value problem having the following form: x ( 4 ) ( t ) + f ( t , x ( t ) , x ' ' ( t ) ) = 0 , 0 < t < 1, x(0) = x’(0) = 0, x”(1) = 0, x ( 3 ) ( 1 ) = 0 . Boundary value problems of very similar type are also considered. It is assumed that f is a function from the space C([0,1]×ℝ²,ℝ). The main tool used in the proof is the Leray-Schauder nonlinear alternative.

Boundary blow-up solutions for a cooperative system involving the p-Laplacian

Li Chen, Yujuan Chen, Dang Luo (2013)

Annales Polonici Mathematici

Similarity:

We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system Δ p u = g ( u - α v ) , Δ p v = f ( v - β u ) in a smooth bounded domain of N , where Δ p is the p-Laplacian operator defined by Δ p u = d i v ( | u | p - 2 u ) with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.

Periodic boundary value problem of a fourth order differential inclusion

Marko Švec (1997)

Archivum Mathematicum

Similarity:

The paper deals with the periodic boundary value problem (1) L 4 x ( t ) + a ( t ) x ( t ) F ( t , x ( t ) ) , t J = [ a , b ] , (2) L i x ( a ) = L i x ( b ) , i = 0 , 1 , 2 , 3 , where L 0 x ( t ) = a 0 x ( t ) , L i x ( t ) = a i ( t ) L i - 1 x ( t ) , i = 1 , 2 , 3 , 4 , a 0 ( t ) = a 4 ( t ) = 1 , a i ( t ) , i = 1 , 2 , 3 and a ( t ) are continuous on J , a ( t ) 0 , a i ( t ) > 0 , i = 1 , 2 , a 1 ( t ) = a 3 ( t ) · F ( t , x ) : J × R {nonempty convex compact subsets of R }, R = ( - , ) . The existence of such periodic solution is proven via Ky Fan’s fixed point theorem.

Existence of positive solutions for a nonlinear fourth order boundary value problem

Ruyun Ma (2003)

Annales Polonici Mathematici

Similarity:

We study the existence of positive solutions of the nonlinear fourth order problem u ( 4 ) ( x ) = λ a ( x ) f ( u ( x ) ) , u(0) = u’(0) = u”(1) = u”’(1) = 0, where a: [0,1] → ℝ may change sign, f(0) < 0, and λ < 0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.

On solutions of a fourth-order Lidstone boundary value problem at resonance

Mariusz Jurkiewicz (2009)

Annales Polonici Mathematici

Similarity:

We consider a Lidstone boundary value problem in k at resonance. We prove the existence of a solution under the assumption that the nonlinear part is a Carathéodory map and conditions similar to those of Landesman-Lazer are satisfied.

The Existence of a Generalized Solution of an m -Point Nonlocal Boundary Value Problem

David Devadze (2017)

Communications in Mathematics

Similarity:

An m -point nonlocal boundary value problem is posed for quasilinear differential equations of first order on the plane. Nonlocal boundary value problems are investigated using the algorithm of reducing nonlocal boundary value problems to a sequence of Riemann-Hilbert problems for a generalized analytic function. The conditions for the existence and uniqueness of a generalized solution in the space are considered.

Asymptotic analysis of the initial boundary value problem for the thermoelastic system in a perforated domain

M. Sango (2003)

Colloquium Mathematicae

Similarity:

We study the initial boundary value problem for the system of thermoelasticity in a sequence of perforated cylindrical domains Q T ( s ) , s = 1,2,... We prove that as s → ∞, the solution of the problem converges in appropriate topologies to the solution of a limit initial boundary value problem of the same type but containing some additional terms which are expressed in terms of quantities related to the geometry of Q T ( s ) . We give an explicit construction of that limit problem.

Vectorial quasilinear diffusion equation with dynamic boundary condition

Nakayashiki, Ryota

Similarity:

In this paper, we consider a class of initial-boundary value problems for quasilinear PDEs, subject to the dynamic boundary conditions. Each initial-boundary problem is denoted by (S) ε with a nonnegative constant ε , and for any ε 0 , (S) ε can be regarded as a vectorial transmission system between the quasilinear equation in the spatial domain Ω , and the parabolic equation on the boundary Γ : = Ω , having a sufficient smoothness. The objective of this study is to establish a mathematical method,...

Multiple positive solutions of a nonlinear fourth order periodic boundary value problem

Lingbin Kong, Daqing Jiang (1998)

Annales Polonici Mathematici

Similarity:

The fourth order periodic boundary value problem u ( 4 ) - m u + F ( t , u ) = 0 , 0 < t < 2π, with u ( i ) ( 0 ) = u ( i ) ( 2 π ) , i = 0,1,2,3, is studied by using the fixed point index of mappings in cones, where F is a nonnegative continuous function and 0 < m < 1. Under suitable conditions on F, it is proved that the problem has at least two positive solutions if m ∈ (0,M), where M is the smallest positive root of the equation tan mπ = -tanh mπ, which takes the value 0.7528094 with an error of ± 10 - 7 .

On boundary value problems for systems of nonlinear generalized ordinary differential equations

Malkhaz Ashordia (2017)

Czechoslovak Mathematical Journal

Similarity:

A general theorem (principle of a priori boundedness) on solvability of the boundary value problem d x = d A ( t ) · f ( t , x ) , h ( x ) = 0 is established, where f : [ a , b ] × n n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A : [ a , b ] n × n with bounded total variation components, and h : BV s ( [ a , b ] , n ) n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x ( t 1 ( x ) ) = ( x ) · x ( t 2 ( x ) ) + c 0 , where t i : BV s ( [ a , b ] , n ) [ a , b ] ( i = 1 , 2 ) and : BV s ( [ a , b ] , n ) n are continuous...

Continuous pluriharmonic boundary values

Per Åhag, Rafał Czyż (2007)

Annales Polonici Mathematici

Similarity:

Let D j be a bounded hyperconvex domain in n j and set D = D × × D s , j=1,...,s, s≥ 3. Also let ₙ be the symmetrized polydisc in ℂⁿ, n ≥ 3. We characterize those real-valued continuous functions defined on the boundary of D or ₙ which can be extended to the inside to a pluriharmonic function. As an application a complete characterization of the compliant functions is obtained.

The basis property in L p of the boundary value problem rationally dependent on the eigenparameter

N. B. Kerimov, Y. N. Aliyev (2006)

Studia Mathematica

Similarity:

We consider a Sturm-Liouville operator with boundary conditions rationally dependent on the eigenparameter. We study the basis property in L p of the system of eigenfunctions corresponding to this operator. We determine the explicit form of the biorthogonal system. Using this we establish a theorem on the minimality of the part of the system of eigenfunctions. For the basisness in L₂ we prove that the system of eigenfunctions is quadratically close to trigonometric systems. For the basisness...