Displaying similar documents to “Ideal extensions of graph algebras”

Hyperidentities in transitive graph algebras

Tiang Poomsa-ard, Jeerayut Wetweerapong, Charuchai Samartkoon (2005)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the corresponding graph algebra A(G) satisfies s ≈ t. A graph G = (V,E) is called a transitive graph if the corresponding graph algebra A(G) satisfies the equation x(yz) ≈ (xz)(yz). An identity s ≈ t of terms s and t of any type t is called a hyperidentity of an algebra A̲ if whenever the operation symbols...

Hyperidentities in associative graph algebras

Tiang Poomsa-ard (2000)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the correspondinggraph algebra A(G) satisfies s ≈ t. A graph G is called associative if the corresponding graph algebra A(G) satisfies the equation (xy)z ≈ x(yz). An identity s ≈ t of terms s and t of any type τ is called a hyperidentity of an algebra A̲ if whenever the operation symbols occurring in s...

Clique graph representations of ptolemaic graphs

Terry A. Mckee (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is ptolemaic if and only if it is both chordal and distance-hereditary. Thus, a ptolemaic graph G has two kinds of intersection graph representations: one from being chordal, and the other from being distance-hereditary. The first of these, called a clique tree representation, is easily generated from the clique graph of G (the intersection graph of the maximal complete subgraphs of G). The second intersection graph representation can also be generated from the clique graph,...