Displaying similar documents to “Star number and star arboricity of a complete multigraph”

Graceful signed graphs

Mukti Acharya, Tarkeshwar Singh (2004)

Czechoslovak Mathematical Journal

Similarity:

A ( p , q ) -sigraph S is an ordered pair ( G , s ) where G = ( V , E ) is a ( p , q ) -graph and s is a function which assigns to each edge of G a positive or a negative sign. Let the sets E + and E - consist of m positive and n negative edges of G , respectively, where m + n = q . Given positive integers k and d , S is said to be ( k , d ) -graceful if the vertices of G can be labeled with distinct integers from the set { 0 , 1 , , k + ( q - 1 ) d } such that when each edge u v of G is assigned the product of its sign and the absolute difference of the integers assigned to...

New edge neighborhood graphs

Ali A. Ali, Salar Y. Alsardary (1997)

Czechoslovak Mathematical Journal

Similarity:

Let G be an undirected simple connected graph, and e = u v be an edge of G . Let N G ( e ) be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to u or v . Let 𝒩 e be the class of all graphs H such that, for some graph G , N G ( e ) H for every edge e of G . Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in 𝒩 e . Balasubramanian and Alsardary [1] obtained some other graphs in 𝒩 e . In this paper we given some new graphs in 𝒩 e .

Decomposition of complete graphs into ( 0 , 2 ) -prisms

Sylwia Cichacz, Soleh Dib, Dalibor Fronček (2014)

Czechoslovak Mathematical Journal

Similarity:

R. Frucht and J. Gallian (1988) proved that bipartite prisms of order 2 n have an α -labeling, thus they decompose the complete graph K 6 n x + 1 for any positive integer x . We use a technique called the ρ + -labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order 2 n called generalized prisms decompose the complete graph K 6 n x + 1 for any positive integer x .

Edge-connectivity of strong products of graphs

Bostjan Bresar, Simon Spacapan (2007)

Discussiones Mathematicae Graph Theory

Similarity:

The strong product G₁ ⊠ G₂ of graphs G₁ and G₂ is the graph with V(G₁)×V(G₂) as the vertex set, and two distinct vertices (x₁,x₂) and (y₁,y₂) are adjacent whenever for each i ∈ 1,2 either x i = y i or x i y i E ( G i ) . In this note we show that for two connected graphs G₁ and G₂ the edge-connectivity λ (G₁ ⊠ G₂) equals minδ(G₁ ⊠ G₂), λ(G₁)(|V(G₂)| + 2|E(G₂)|), λ(G₂)(|V(G₁)| + 2|E(G₁)|). In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs.