Soluble products of nilpotent groups
John C. Lennox, Derek J. S. Robinson (1980)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
John C. Lennox, Derek J. S. Robinson (1980)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
Similarity:
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...
Vikas Bist (1991)
Publicacions Matemàtiques
Similarity:
Let U(RG) be the unit group of the group ring RG. Groups G such that U(RG) is FC-nilpotent are determined, where R is the ring of integers Z or a field K of characteristic zero.
Hilton, Peter, Militello, Robert (1996)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Temple H. Fay (1994)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Adolfo Ballester-Bolinches, James C. Beidleman, John Cossey, Hermann Heineken, María Carmen Pedraza-Aguilera (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jutta Hausen (1981)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Artemovych, O. (2002)
Serdica Mathematical Journal
Similarity:
We characterize the groups which do not have non-trivial perfect sections and such that any strictly descending chain of non-“nilpotent-by-finite” subgroups is finite.