The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Generalizations of Boolean algebras. An attribute exploration”

A short note on lattices allowing disjunctive reasoning.

Enric Trillas, Eloy Renedo, Claudi Alsina (2006)

Mathware and Soft Computing

Similarity:

This short note shows that the scheme of disjunctive reasoning, , not , does not hold neither in proper ortholattices nor in proper de Morgan algebras. In both cases the scheme, once translated into the inequality , forces the structure to be a boolean algebra.

Two Axiomatizations of Nelson Algebras

Adam Grabowski (2015)

Formalized Mathematics

Similarity:

Nelson algebras were first studied by Rasiowa and Białynicki- Birula [1] under the name N-lattices or quasi-pseudo-Boolean algebras. Later, in investigations by Monteiro and Brignole [3, 4], and [2] the name “Nelson algebras” was adopted - which is now commonly used to show the correspondence with Nelson’s paper [14] on constructive logic with strong negation. By a Nelson algebra we mean an abstract algebra 〈L, T, -, ¬, →, ⇒, ⊔, ⊓〉 where L is the carrier, − is a quasi-complementation...

Zero-dimensional Dugundji spaces admit profinite lattice structures

Lutz Heindorf (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.