Displaying similar documents to “Convergent algorithms suitable for the solution of the semiconductor device equations”

Newton's iteration with a conjugate gradient based decomposition method for an elliptic PDE with a nonlinear boundary condition

Jonas Koko (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

Newton's iteration is studied for the numerical solution of an elliptic PDE with nonlinear boundary conditions. At each iteration of Newton's method, a conjugate gradient based decomposition method is applied to the matrix of the linearized system. The decomposition is such that all the remaining linear systems have the same constant matrix. Numerical results confirm the savings with respect to the computational cost, compared with the classical Newton method with factorization at each...

Newton methods for solving two classes of nonsmooth equations

Yan Gao (2001)

Applications of Mathematics

Similarity:

The paper is devoted to two systems of nonsmooth equations. One is the system of equations of max-type functions and the other is the system of equations of smooth compositions of max-type functions. The Newton and approximate Newton methods for these two systems are proposed. The Q-superlinear convergence of the Newton methods and the Q-linear convergence of the approximate Newton methods are established. The present methods can be more easily implemented than the previous ones, since...

Semi-smooth Newton methods for the Signorini problem

Kazufumi Ito, Karl Kunisch (2008)

Applications of Mathematics

Similarity:

Semi-smooth Newton methods are analyzed for the Signorini problem. A proper regularization is introduced which guarantees that the semi-smooth Newton method is superlinearly convergent for each regularized problem. Utilizing a shift motivated by an augmented Lagrangian framework, to the regularization term, the solution to each regularized problem is feasible. Convergence of the regularized problems is shown and a report on numerical experiments is given.

A semi-smooth Newton method for solving elliptic equations with gradient constraints

Roland Griesse, Karl Kunisch (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated. The one- and multi-dimensional cases are treated separately. Numerical examples illustrate the approach and as well as structural features of the solution.