Displaying similar documents to “Shape optimization of elastic axisymmetric plate on an elastic foundation”

Weight minimization of elastic plates using Reissner-Mindlin model and mixed-interpolated elements

Ivan Hlaváček (1996)

Applications of Mathematics

Similarity:

The problem to find an optimal thickness of the plate in a set of bounded Lipschitz continuous functions is considered. Mean values of the intensity of shear stresses must not exceed a given value. Using a penalty method and finite element spaces with interpolation to overcome the “locking” effect, an approximate optimization problem is proposed. We prove its solvability and present some convergence analysis.

Optimal design of laminated plate with obstacle

Ján Lovíšek (1992)

Applications of Mathematics

Similarity:

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form is given by inequalities expressing the principle of virtual power in its inequality form. The elliptic, linear symmetric operators as well as convex sets of possible states depend on the control parameter. The existence theorem for the optimal control is applied to design problems for an elastic laminated plate whose variable thickness appears as a control variable.

Shape optimization of elasto-plastic axisymmetric bodies

Ivan Hlaváček (1991)

Applications of Mathematics

Similarity:

A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.