The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints”

Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case

Jiří V. Outrata (1999)

Kybernetika

Similarity:

The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity...

Sufficient Second Order Optimality Conditions for C^1 Multiobjective Optimization Problems

Gadhi, N. (2003)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary 90C29; Secondary 90C30. In this work, we use the notion of Approximate Hessian introduced by Jeyakumar and Luc [19], and a special scalarization to establish sufficient optimality conditions for constrained multiobjective optimization problems. Throughout this paper, the data are assumed to be of class C^1, but not necessarily of class C^(1.1).

On necessary optimality conditions in a class of optimization problems

Jiří V. Outrata (1989)

Aplikace matematiky

Similarity:

In the paper necessary optimality conditions are derived for the minimization of a locally Lipschitz objective with respect to the consttraints x S , 0 F ( x ) , where S is a closed set and F is a set-valued map. No convexity requirements are imposed on F . The conditions are applied to a generalized mathematical programming problem and to an abstract finite-dimensional optimal control problem.