Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case

Jiří V. Outrata

Kybernetika (1999)

  • Volume: 35, Issue: 2, page [177]-193
  • ISSN: 0023-5954

Abstract

top
The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution.

How to cite

top

Outrata, Jiří V.. "Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case." Kybernetika 35.2 (1999): [177]-193. <http://eudml.org/doc/33420>.

@article{Outrata1999,
abstract = {The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution.},
author = {Outrata, Jiří V.},
journal = {Kybernetika},
keywords = {mathematical programs; optimality condition; equilibrium constraints; mathematical programs; optimality condition; equilibrium constraints},
language = {eng},
number = {2},
pages = {[177]-193},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case},
url = {http://eudml.org/doc/33420},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Outrata, Jiří V.
TI - Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 2
SP - [177]
EP - 193
AB - The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution.
LA - eng
KW - mathematical programs; optimality condition; equilibrium constraints; mathematical programs; optimality condition; equilibrium constraints
UR - http://eudml.org/doc/33420
ER -

References

top
  1. Anandalingam G., (eds.) T. Friesz, Hierarchical optimization, Ann. Oper. Res. 34 (1992) (1992) Zbl0751.90067MR1150995
  2. Aubin J.-P., Frankowska H., Set–Valued Analysis, Birkhäuser, Boston 1990 Zbl1168.49014MR1048347
  3. Clarke F. H., Optimization and Nonsmooth Analysis, Wiley, New York 1983 Zbl0696.49002MR0709590
  4. Dempe S., 10.1080/02331939208843831, Optimization 25 (1992), 341–354 (1992) MR1235324DOI10.1080/02331939208843831
  5. Kočvara M., Outrata J. V., On the solution of optimum design problems with variational inequalities, In: Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific, Singapore 1995, pp. 172–192 (1995) Zbl0952.49034MR1460001
  6. Kočvara M., Outrata J. V., A nonsmooth approach to optimization problems with equilibrium constraints, In: Proc. of the ICCP (M. Ferris and J.-S. Pang, eds.), SIAM 1997, pp. 148–164 (1997) Zbl0887.90168MR1445078
  7. Luo Z.-Q., Pang J.-S., Ralph D., Wu S.-Q., Exact penalization and stationary conditions of mathematical programs with equilibrium constraints, Math. Programming 75 (1996), 19–76 (1996) MR1415093
  8. Luo Z.-Q., Pang J.-S., Ralph D., Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge 1996 Zbl1139.90003MR1419501
  9. B. S., Approximation Methods in Problems of Optimization and Control, Nauka, Moscow 1988. (In Russian; English translation to appear in Wiley–Interscience) (1988) Zbl0643.49001MR0945143
  10. B. S., Sensitivity analysis in nonsmooth optimization, In: Theoretical Aspects of Industrial Design (D. A. Field, and V. Komkov, eds.), SIAM Publications, Philadelphia 1992, pp. 32–46 (1992) Zbl0769.90075MR1157413
  11. B. S., 10.1006/jmaa.1994.1144, J. Math. Anal. Appl. 183 (1994), 250–288 (1994) Zbl0807.49016MR1273445DOI10.1006/jmaa.1994.1144
  12. B. S., 10.1016/0362-546X(94)90033-7, Nonlinear Analysis, Theory, Methods & Applications 22 (1994), 173–206 (1994) Zbl0805.93044MR1258955DOI10.1016/0362-546X(94)90033-7
  13. Murty K. G., Linear Programming, Wiley, New York 1983 Zbl0691.90051MR0720547
  14. Murty K. G., Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin 1988 Zbl0634.90037MR0949214
  15. Outrata J. V., 10.1137/0804019, SIAM J. Optimization 4 (1994), 340–357 (1994) Zbl0826.90114MR1273763DOI10.1137/0804019
  16. Outrata J. V., Optimality conditions for a class of mathematical programs with equilibrium constraints, to appea 
  17. Pang J.-S., Ralph D., 10.1287/moor.21.2.401, Math. Oper. Res. 21 (1996), 401–426 (1996) Zbl0857.90122MR1397221DOI10.1287/moor.21.2.401
  18. Robinson S. M., 10.1287/moor.5.1.43, Math. Oper. Res. 5 (1980), 43–62 (1980) Zbl0437.90094MR0561153DOI10.1287/moor.5.1.43
  19. Scholtes S., Introduction to Piecewise Differentiable Equations, Habil. Thesis, University of Karlsruhe, 1994 
  20. Treiman J. S., General optimality conditions for bi-level optimization problems, Preprint 
  21. Ye J. J., Zhu D. L., 10.1080/02331939508844060, Optimization 33 (1995), 9–27 (1995) Zbl0820.65032MR1333152DOI10.1080/02331939508844060
  22. Ye J. J., Zhu D. L., Zhu Q. J., 10.1137/S1052623493257344, SIAM J. Optimization 7 (1997), 481–507 (1997) Zbl0873.49018MR1443630DOI10.1137/S1052623493257344
  23. Ye J. J., Ye X. Y., 10.1287/moor.22.4.977, Math. Oper. Res. 22 (1997), 977–997 (1997) Zbl1088.90042MR1484692DOI10.1287/moor.22.4.977
  24. Zhang R., 10.1137/0804029, SIAM J. Optimization 4 (1994), 521–536 (1994) Zbl0819.90107MR1287814DOI10.1137/0804029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.