Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case
Kybernetika (1999)
- Volume: 35, Issue: 2, page [177]-193
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOutrata, Jiří V.. "Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case." Kybernetika 35.2 (1999): [177]-193. <http://eudml.org/doc/33420>.
@article{Outrata1999,
abstract = {The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution.},
author = {Outrata, Jiří V.},
journal = {Kybernetika},
keywords = {mathematical programs; optimality condition; equilibrium constraints; mathematical programs; optimality condition; equilibrium constraints},
language = {eng},
number = {2},
pages = {[177]-193},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case},
url = {http://eudml.org/doc/33420},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Outrata, Jiří V.
TI - Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 2
SP - [177]
EP - 193
AB - The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution.
LA - eng
KW - mathematical programs; optimality condition; equilibrium constraints; mathematical programs; optimality condition; equilibrium constraints
UR - http://eudml.org/doc/33420
ER -
References
top- Anandalingam G., (eds.) T. Friesz, Hierarchical optimization, Ann. Oper. Res. 34 (1992) (1992) Zbl0751.90067MR1150995
- Aubin J.-P., Frankowska H., Set–Valued Analysis, Birkhäuser, Boston 1990 Zbl1168.49014MR1048347
- Clarke F. H., Optimization and Nonsmooth Analysis, Wiley, New York 1983 Zbl0696.49002MR0709590
- Dempe S., 10.1080/02331939208843831, Optimization 25 (1992), 341–354 (1992) MR1235324DOI10.1080/02331939208843831
- Kočvara M., Outrata J. V., On the solution of optimum design problems with variational inequalities, In: Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific, Singapore 1995, pp. 172–192 (1995) Zbl0952.49034MR1460001
- Kočvara M., Outrata J. V., A nonsmooth approach to optimization problems with equilibrium constraints, In: Proc. of the ICCP (M. Ferris and J.-S. Pang, eds.), SIAM 1997, pp. 148–164 (1997) Zbl0887.90168MR1445078
- Luo Z.-Q., Pang J.-S., Ralph D., Wu S.-Q., Exact penalization and stationary conditions of mathematical programs with equilibrium constraints, Math. Programming 75 (1996), 19–76 (1996) MR1415093
- Luo Z.-Q., Pang J.-S., Ralph D., Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge 1996 Zbl1139.90003MR1419501
- B. S., Approximation Methods in Problems of Optimization and Control, Nauka, Moscow 1988. (In Russian; English translation to appear in Wiley–Interscience) (1988) Zbl0643.49001MR0945143
- B. S., Sensitivity analysis in nonsmooth optimization, In: Theoretical Aspects of Industrial Design (D. A. Field, and V. Komkov, eds.), SIAM Publications, Philadelphia 1992, pp. 32–46 (1992) Zbl0769.90075MR1157413
- B. S., 10.1006/jmaa.1994.1144, J. Math. Anal. Appl. 183 (1994), 250–288 (1994) Zbl0807.49016MR1273445DOI10.1006/jmaa.1994.1144
- B. S., 10.1016/0362-546X(94)90033-7, Nonlinear Analysis, Theory, Methods & Applications 22 (1994), 173–206 (1994) Zbl0805.93044MR1258955DOI10.1016/0362-546X(94)90033-7
- Murty K. G., Linear Programming, Wiley, New York 1983 Zbl0691.90051MR0720547
- Murty K. G., Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin 1988 Zbl0634.90037MR0949214
- Outrata J. V., 10.1137/0804019, SIAM J. Optimization 4 (1994), 340–357 (1994) Zbl0826.90114MR1273763DOI10.1137/0804019
- Outrata J. V., Optimality conditions for a class of mathematical programs with equilibrium constraints, to appea
- Pang J.-S., Ralph D., 10.1287/moor.21.2.401, Math. Oper. Res. 21 (1996), 401–426 (1996) Zbl0857.90122MR1397221DOI10.1287/moor.21.2.401
- Robinson S. M., 10.1287/moor.5.1.43, Math. Oper. Res. 5 (1980), 43–62 (1980) Zbl0437.90094MR0561153DOI10.1287/moor.5.1.43
- Scholtes S., Introduction to Piecewise Differentiable Equations, Habil. Thesis, University of Karlsruhe, 1994
- Treiman J. S., General optimality conditions for bi-level optimization problems, Preprint
- Ye J. J., Zhu D. L., 10.1080/02331939508844060, Optimization 33 (1995), 9–27 (1995) Zbl0820.65032MR1333152DOI10.1080/02331939508844060
- Ye J. J., Zhu D. L., Zhu Q. J., 10.1137/S1052623493257344, SIAM J. Optimization 7 (1997), 481–507 (1997) Zbl0873.49018MR1443630DOI10.1137/S1052623493257344
- Ye J. J., Ye X. Y., 10.1287/moor.22.4.977, Math. Oper. Res. 22 (1997), 977–997 (1997) Zbl1088.90042MR1484692DOI10.1287/moor.22.4.977
- Zhang R., 10.1137/0804029, SIAM J. Optimization 4 (1994), 521–536 (1994) Zbl0819.90107MR1287814DOI10.1137/0804029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.