Displaying similar documents to “A note on the interval-valued marginal problem and its maximum entropy solution”

Fiber entropy and conditional variational principles in compact non-metrizable spaces

Tomasz Downarowicz, Jacek Serafin (2002)

Fundamenta Mathematicae

Similarity:

We consider a pair of topological dynamical systems on compact Hausdorff (not necessarily metrizable) spaces, one being a factor of the other. Measure-theoretic and topological notions of fiber entropy and conditional entropy are defined and studied. Abramov and Rokhlin's definition of fiber entropy is extended, using disintegration. We prove three variational principles of conditional nature, partly generalizing some results known before in metric spaces: (1) the topological conditional...

Maximal entropy measures in dimension zero

Dawid Huczek (2012)

Colloquium Mathematicae

Similarity:

We prove that an invertible zero-dimensional dynamical system has an invariant measure of maximal entropy if and only if it is an extension of an asymptotically h-expansive system of equal topological entropy.

Symbolic extensions for nonuniformly entropy expanding maps

David Burguet (2010)

Colloquium Mathematicae

Similarity:

A nonuniformly entropy expanding map is any ¹ map defined on a compact manifold whose ergodic measures with positive entropy have only nonnegative Lyapunov exponents. We prove that a r nonuniformly entropy expanding map T with r > 1 has a symbolic extension and we give an explicit upper bound of the symbolic extension entropy in terms of the positive Lyapunov exponents by following the approach of T. Downarowicz and A. Maass [Invent. Math. 176 (2009)].

Maličky-Riečan's entropy as a version of operator entropy

Bartosz Frej (2006)

Fundamenta Mathematicae

Similarity:

The paper deals with the notion of entropy for doubly stochastic operators. It is shown that the entropy defined by Maličky and Riečan in [MR] is equal to the operator entropy proposed in [DF]. Moreover, some continuity properties of the [MR] entropy are established.

Entropy dimension and variational principle

Young-Ho Ahn, Dou Dou, Kyewon Koh Park (2010)

Studia Mathematica

Similarity:

Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.