Displaying similar documents to “Fuzzy clustering of spatial binary data”

The EM algorithm and its implementation for the estimation of frequencies of SNP-haplotypes

Joanna Polańska (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

A haplotype analysis is becoming increasingly important in studying complex genetic diseases. Various algorithms and specialized computer software have been developed to statistically estimate haplotype frequencies from marker phenotypes in unrelated individuals. However, currently there are very few empirical reports on the performance of the methods for the recovery of haplotype frequencies. One of the most widely used methods of haplotype reconstruction is the Maximum Likelihood method,...

An application of the expectation-maximization algorithm to interference rejection for direct-sequence spread-spectrum signals

Quan G. Zhang, Costas N. Georghiades (1999)

Kybernetika

Similarity:

For a direct-sequence spread-spectrum (DS-SS) system we pose and solve the problem of maximum-likelihood (ML) sequence estimation in the presence of narrowband interference, using the expectation-maximization (EM) algorithm. It is seen that the iterative EM algorithm obtains at each iteration an estimate of the interference which is then subtracted from the data before a new sequence estimate is produced. Both uncoded and trellis coded systems are studied, and the EM-based algorithm...

Em Algorithm for MLE of a Probit Model for Multiple Ordinal Outcomes

Grigorova, Denitsa, Encheva, Elitsa, Gueorguieva, Ralitza (2013)

Serdica Journal of Computing

Similarity:

The correlated probit model is frequently used for multiple ordered data since it allows to incorporate seamlessly different correlation structures. The estimation of the probit model parameters based on direct maximization of the limited information maximum likelihood is a numerically intensive procedure. We propose an extension of the EM algorithm for obtaining maximum likelihood estimates for a correlated probit model for multiple ordinal outcomes. The algorithm is implemented in...

An alternative extension of the k-means algorithm for clustering categorical data

Ohn San, Van-Nam Huynh, Yoshiteru Nakamori (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

Most of the earlier work on clustering has mainly been focused on numerical data whose inherent geometric properties can be exploited to naturally define distance functions between data points. Recently, the problem of clustering categorical data has started drawing interest. However, the computational cost makes most of the previous algorithms unacceptable for clustering very large databases. The -means algorithm is well known for its efficiency in this respect. At the same time, working...

Application of the Rasch model in categorical pedigree analysis using MCEM: I binary data

G. Qian, R. M. Huggins, D. Z. Loesch (2004)

Discussiones Mathematicae Probability and Statistics

Similarity:

An extension of the Rasch model with correlated latent variables is proposed to model correlated binary data within families. The latent variables have the classical correlation structure of Fisher (1918) and the model parameters thus have genetic interpretations. The proposed model is fitted to data using a hybrid of the Metropolis-Hastings algorithm and the MCEM modification of the EM-algorithm and is illustrated using genotype-phenotype data on a psychological subtest in families...