Displaying similar documents to “Construction of nonlinear discrimination function based on the MDL criterion”

Analysis of correlation based dimension reduction methods

Yong Joon Shin, Cheong Hee Park (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

Dimension reduction is an important topic in data mining and machine learning. Especially dimension reduction combined with feature fusion is an effective preprocessing step when the data are described by multiple feature sets. Canonical Correlation Analysis (CCA) and Discriminative Canonical Correlation Analysis (DCCA) are feature fusion methods based on correlation. However, they are different in that DCCA is a supervised method utilizing class label information, while CCA is an unsupervised...

Piecewise linear classifiers preserving high local recognition rates

Hiroshi Tenmoto, Mineichi Kudo, Masaru Shimbo (1998)

Kybernetika

Similarity:

We propose a new method to construct piecewise linear classifiers. This method constructs hyperplanes of a piecewise linear classifier so as to keep the correct recognition rate over a threshold for a training set. The threshold is determined automatically by the MDL (Minimum Description Length) criterion so as to avoid overfitting of the classifier to the training set. The proposed method showed better results in some experiments than a previous method.

Linear discriminant analysis with a generalization of the Moore-Penrose pseudoinverse

Tomasz Górecki, Maciej Łuczak (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

The Linear Discriminant Analysis (LDA) technique is an important and well-developed area of classification, and to date many linear (and also nonlinear) discrimination methods have been put forward. A complication in applying LDA to real data occurs when the number of features exceeds that of observations. In this case, the covariance estimates do not have full rank, and thus cannot be inverted. There are a number of ways to deal with this problem. In this paper, we propose improving...