Displaying similar documents to “Non-monotoneous parallel iteration for solving convex feasibility problems”

A sequential iteration algorithm with non-monotoneous behaviour in the method of projections onto convex sets

Gilbert Crombez (2006)

Czechoslovak Mathematical Journal

Similarity:

The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in a Euclidean space, may lead to slow convergence of the constructed sequence when that sequence enters some narrow “corridor” between two or more convex sets. A way to leave such corridor consists in taking a big step at different moments during the iteration, because in that way the monotoneous behaviour that is responsible for the slow convergence may be interrupted....

Convergence of prox-regularization methods for generalized fractional programming

Ahmed Roubi (2002)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

We analyze the convergence of the prox-regularization algorithms introduced in [1], to solve generalized fractional programs, without assuming that the optimal solutions set of the considered problem is nonempty, and since the objective functions are variable with respect to the iterations in the auxiliary problems generated by Dinkelbach-type algorithms DT1 and DT2, we consider that the regularizing parameter is also variable. On the other hand we study the convergence when the iterates...

A new simultaneous subgradient projection algorithm for solving a multiple-sets split feasibility problem

Yazheng Dang, Yan Gao (2014)

Applications of Mathematics

Similarity:

In this paper, we present a simultaneous subgradient algorithm for solving the multiple-sets split feasibility problem. The algorithm employs two extrapolated factors in each iteration, which not only improves feasibility by eliminating the need to compute the Lipschitz constant, but also enhances flexibility due to applying variable step size. The convergence of the algorithm is proved under suitable conditions. Numerical results illustrate that the new algorithm has better convergence...