Displaying similar documents to “Finite difference scheme for the Willmore flow of graphs”

A novel approach to modelling of flow in fractured porous medium

Jan Šembera, Jiří Maryška, Jiřina Královcová, Otto Severýn (2007)

Kybernetika

Similarity:

There are many problems of groundwater flow in a disrupted rock massifs that should be modelled using numerical models. It can be done via “standard approaches” such as increase of the permeability of the porous medium to account the fracture system (or double-porosity models), or discrete stochastic fracture network models. Both of these approaches appear to have their constraints and limitations, which make them unsuitable for the large- scale long-time hydrogeological calculations....

High order finite volume schemes for numerical solution of 2D and 3D transonic flows

Jiří Fürst, Karel Kozel, Petr Furmánek (2009)

Kybernetika

Similarity:

The aim of this article is a qualitative analysis of two modern finite volume (FVM) schemes. First one is the so called Modified Causon’s scheme, which is based on the classical MacCormack FVM scheme in total variation diminishing (TVD) form, but is simplified in such a way that the demands on computational power are much smaller without loss of accuracy. Second one is implicit WLSQR (Weighted Least Square Reconstruction) scheme combined with various types of numerical fluxes (AUSMPW+...

Numerical simulation of 3D transonic flow through cascades

Jaroslav Fořt, Jiří Fürst, J. Halama, Karel Kozel (2001)

Mathematica Bohemica

Similarity:

The paper deals with the numerical solution of 3D transonic flow through axial turbine cascades. Finite volume methods based on TVD MacCormack cell-centered and Ni’s cell-vertex schemes are discussed. A comparison of numerical results for 3D stator and rotor cascades is presented.

Curvature and Flow in Digital Space

Atsushi Imiya (2013)

Actes des rencontres du CIRM

Similarity:

We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.