Displaying similar documents to “Asymptotic properties and optimization of some non-Markovian stochastic processes”

Estimates of stability of Markov control processes with unbounded costs

Evgueni I. Gordienko, Francisco Salem-Silva (2000)

Kybernetika

Similarity:

For a discrete-time Markov control process with the transition probability p , we compare the total discounted costs V β ( π β ) and V β ( π ˜ β ) , when applying the optimal control policy π β and its approximation π ˜ β . The policy π ˜ β is optimal for an approximating process with the transition probability p ˜ . A cost per stage for considered processes can be unbounded. Under certain ergodicity assumptions we establish the upper bound for the relative stability index [ V β ( π ˜ β ) - V β ( π β ) ] / V β ( π β ) . This bound does not depend...

Partially observable Markov decision processes with partially observable random discount factors

E. Everardo Martinez-Garcia, J. Adolfo Minjárez-Sosa, Oscar Vega-Amaya (2022)

Kybernetika

Similarity:

This paper deals with a class of partially observable discounted Markov decision processes defined on Borel state and action spaces, under unbounded one-stage cost. The discount rate is a stochastic process evolving according to a difference equation, which is also assumed to be partially observable. Introducing a suitable control model and filtering processes, we prove the existence of optimal control policies. In addition, we illustrate our results in a class of GI/GI/1 queueing systems...

Asymptotic stability condition for stochastic Markovian systems of differential equations

Efraim Shmerling (2010)

Mathematica Bohemica

Similarity:

Asymptotic stability of the zero solution for stochastic jump parameter systems of differential equations given by d X ( t ) = A ( ξ ( t ) ) X ( t ) d t + H ( ξ ( t ) ) X ( t ) d w ( t ) , where ξ ( t ) is a finite-valued Markov process and w(t) is a standard Wiener process, is considered. It is proved that the existence of a unique positive solution of the system of coupled Lyapunov matrix equations derived in the paper is a necessary asymptotic stability condition.

A mathematical framework for learning and adaption: (generalized) random systems with complete connections.

Ulrich Herkenrath, Radu Theodorescu (1981)

Trabajos de Estadística e Investigación Operativa

Similarity:

The aim of this paper is to show that the theory of (generalized) random systems with complete connection may serve as a mathematical framework for learning and adaption. Chapter 1 is of an introductory nature and gives a general description of the problems with which one is faced. In Chapter 2 the mathematical model and some results about it are explained. Chapter 3 deals with special learning and adaption models.