Displaying similar documents to “On reflexive closed set lattices”

Reflexivity of bilattices

Kamila Kliś-Garlicka (2013)

Czechoslovak Mathematical Journal

Similarity:

We study reflexivity of bilattices. Some examples of reflexive and non-reflexive bilattices are given. With a given subspace lattice we may associate a bilattice Σ . Similarly, having a bilattice Σ we may construct a subspace lattice Σ . Connections between reflexivity of subspace lattices and associated bilattices are investigated. It is also shown that the direct sum of any two bilattices is never reflexive.

Join-closed and meet-closed subsets in complete lattices

František Machala, Vladimír Slezák (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

To every subset A of a complete lattice L we assign subsets J ( A ) , M ( A ) and define join-closed and meet-closed sets in L . Some properties of such sets are proved. Join- and meet-closed sets in power-set lattices are characterized. The connections about join-independent (meet-independent) and join-closed (meet-closed) subsets are also presented in this paper.

Lattice-inadmissible incidence structures

Frantisek Machala, Vladimír Slezák (2004)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Join-independent and meet-independent sets in complete lattices were defined in [6]. According to [6], to each complete lattice (L,≤) and a cardinal number p one can assign (in a unique way) an incidence structure J L p of independent sets of (L,≤). In this paper some lattice-inadmissible incidence structures are founded, i.e. such incidence structures that are not isomorphic to any incidence structure J L p .

An extension of the ordering based on nullnorms

Emel Aşıcı (2019)

Kybernetika

Similarity:

In this paper, we generally study an order induced by nullnorms on bounded lattices. We investigate monotonicity property of nullnorms on bounded lattices with respect to the F -partial order. Also, we introduce the set of incomparable elements with respect to the F-partial order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between the order induced by a nullnorm and the distributivity property for nullnorms.