The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On reflexive closed set lattices”

Reflexivity of bilattices

Kamila Kliś-Garlicka (2013)

Czechoslovak Mathematical Journal

Similarity:

We study reflexivity of bilattices. Some examples of reflexive and non-reflexive bilattices are given. With a given subspace lattice we may associate a bilattice Σ . Similarly, having a bilattice Σ we may construct a subspace lattice Σ . Connections between reflexivity of subspace lattices and associated bilattices are investigated. It is also shown that the direct sum of any two bilattices is never reflexive.

Join-closed and meet-closed subsets in complete lattices

František Machala, Vladimír Slezák (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

To every subset A of a complete lattice L we assign subsets J ( A ) , M ( A ) and define join-closed and meet-closed sets in L . Some properties of such sets are proved. Join- and meet-closed sets in power-set lattices are characterized. The connections about join-independent (meet-independent) and join-closed (meet-closed) subsets are also presented in this paper.

Lattice-inadmissible incidence structures

Frantisek Machala, Vladimír Slezák (2004)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Join-independent and meet-independent sets in complete lattices were defined in [6]. According to [6], to each complete lattice (L,≤) and a cardinal number p one can assign (in a unique way) an incidence structure J L p of independent sets of (L,≤). In this paper some lattice-inadmissible incidence structures are founded, i.e. such incidence structures that are not isomorphic to any incidence structure J L p .

An extension of the ordering based on nullnorms

Emel Aşıcı (2019)

Kybernetika

Similarity:

In this paper, we generally study an order induced by nullnorms on bounded lattices. We investigate monotonicity property of nullnorms on bounded lattices with respect to the F -partial order. Also, we introduce the set of incomparable elements with respect to the F-partial order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between the order induced by a nullnorm and the distributivity property for nullnorms.