The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Extreme preservers of maximal column rank inequalities of matrix sums over semirings”

Zero-term ranks of real matrices and their preservers

LeRoy B. Beasley, Young Bae Jun, Seok-Zun Song (2004)

Czechoslovak Mathematical Journal

Similarity:

Zero-term rank of a matrix is the minimum number of lines (rows or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve zero-term rank of the m × n real matrices. We also obtain combinatorial equivalent condition for the zero-term rank of a real matrix.

Perimeter preservers of nonnegative integer matrices

Seok-Zun Song, Kyung-Tae Kang, Sucheol Yi (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We investigate the perimeter of nonnegative integer matrices. We also characterize the linear operators which preserve the rank and perimeter of nonnegative integer matrices. That is, a linear operator T preserves the rank and perimeter of rank- 1 matrices if and only if it has the form T ( A ) = P ( A B ) Q , or T ( A ) = P ( A t B ) Q with appropriate permutation matrices P and Q and positive integer matrix B , where denotes Hadamard product.

Perimeter preserver of matrices over semifields

Seok-Zun Song, Kyung-Tae Kang, Young Bae Jun (2006)

Czechoslovak Mathematical Journal

Similarity:

For a rank- 1 matrix A = 𝐚 𝐛 t , we define the perimeter of A as the number of nonzero entries in both 𝐚 and 𝐛 . We characterize the linear operators which preserve the rank and perimeter of rank- 1 matrices over semifields. That is, a linear operator T preserves the rank and perimeter of rank- 1 matrices over semifields if and only if it has the form T ( A ) = U A V , or T ( A ) = U A t V with some invertible matrices U and V.