Perimeter preserver of matrices over semifields
Seok-Zun Song; Kyung-Tae Kang; Young Bae Jun
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 2, page 515-524
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSong, Seok-Zun, Kang, Kyung-Tae, and Jun, Young Bae. "Perimeter preserver of matrices over semifields." Czechoslovak Mathematical Journal 56.2 (2006): 515-524. <http://eudml.org/doc/31044>.
@article{Song2006,
abstract = {For a rank-$1$ matrix $A= \{\mathbf \{a\} \mathbf \{b\}\}^t$, we define the perimeter of $A$ as the number of nonzero entries in both $\mathbf \{a\}$ and $\mathbf \{b\}$. We characterize the linear operators which preserve the rank and perimeter of rank-$1$ matrices over semifields. That is, a linear operator $T$ preserves the rank and perimeter of rank-$1$ matrices over semifields if and only if it has the form $T(A)=U A V$, or $T(A)=U A^t V$ with some invertible matrices U and V.},
author = {Song, Seok-Zun, Kang, Kyung-Tae, Jun, Young Bae},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear operator; rank; dominate; perimeter; $(U,V)$-operator; linear operator; rank; dominate; perimeter; -operator; perimeter preserver; rank preserver},
language = {eng},
number = {2},
pages = {515-524},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Perimeter preserver of matrices over semifields},
url = {http://eudml.org/doc/31044},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Song, Seok-Zun
AU - Kang, Kyung-Tae
AU - Jun, Young Bae
TI - Perimeter preserver of matrices over semifields
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 515
EP - 524
AB - For a rank-$1$ matrix $A= {\mathbf {a} \mathbf {b}}^t$, we define the perimeter of $A$ as the number of nonzero entries in both $\mathbf {a}$ and $\mathbf {b}$. We characterize the linear operators which preserve the rank and perimeter of rank-$1$ matrices over semifields. That is, a linear operator $T$ preserves the rank and perimeter of rank-$1$ matrices over semifields if and only if it has the form $T(A)=U A V$, or $T(A)=U A^t V$ with some invertible matrices U and V.
LA - eng
KW - linear operator; rank; dominate; perimeter; $(U,V)$-operator; linear operator; rank; dominate; perimeter; -operator; perimeter preserver; rank preserver
UR - http://eudml.org/doc/31044
ER -
References
top- 10.1016/0024-3795(84)90158-7, Linear Algebra Appl. 59 (1984), 55–77. (1984) MR0743045DOI10.1016/0024-3795(84)90158-7
- 10.1080/03081080108818677, Linear and Multilinear Algebra 48 (2001), 313–318. (2001) MR1928400DOI10.1080/03081080108818677
- 10.7151/dmgaa.1038, Discuss. Math. Gen. Algebra Appl. 21 (2001), 207–218. (2001) MR1894316DOI10.7151/dmgaa.1038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.