Displaying similar documents to “Some properties of relatively strong pseudocompactness”

A note on k-c-semistratifiable spaces and strong β -spaces

Li-Xia Wang, Liang-Xue Peng (2011)

Mathematica Bohemica

Similarity:

Recall that a space X is a c-semistratifiable (CSS) space, if the compact sets of X are G δ -sets in a uniform way. In this note, we introduce another class of spaces, denoting it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We discuss some properties of k-c-semistratifiable spaces. We prove that a T 2 -space X is a k-c-semistratifiable space if and only if X has a g function which satisfies the following conditions: (1) For each x X , { x } = { g ( x , n ) : n } and g ( x , n + 1 ) g ( x , n ) for each...

Indiscernibles and dimensional compactness

C. Ward Henson, Pavol Zlatoš (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set u S G in a biequivalence vector space W , M , G , such that x - y M for distinct x , y u , contains an infinite independent subset. Consequently, a class X G is dimensionally compact iff the π -equivalence M is compact on X . This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.

On k -spaces and k R -spaces

Jinjin Li (2005)

Czechoslovak Mathematical Journal

Similarity:

In this note we study the relation between k R -spaces and k -spaces and prove that a k R -space with a σ -hereditarily closure-preserving k -network consisting of compact subsets is a k -space, and that a k R -space with a point-countable k -network consisting of compact subsets need not be a k -space.