The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Special isomorphisms of F [ x 1 , ... , x n ] preserving GCD and their use”

Vieta’s Formula about the Sum of Roots of Polynomials

Artur Korniłowicz, Karol Pąk (2017)

Formalized Mathematics

Similarity:

In the article we formalized in the Mizar system [2] the Vieta formula about the sum of roots of a polynomial anxn + an−1xn−1 + ··· + a1x + a0 defined over an algebraically closed field. The formula says that [...] x1+x2+⋯+xn−1+xn=−an−1an x 1 + x 2 + + x n - 1 + x n = - a n - 1 a n , where x1, x2,…, xn are (not necessarily distinct) roots of the polynomial [12]. In the article the sum is denoted by SumRoots.

A note on k-c-semistratifiable spaces and strong β -spaces

Li-Xia Wang, Liang-Xue Peng (2011)

Mathematica Bohemica

Similarity:

Recall that a space X is a c-semistratifiable (CSS) space, if the compact sets of X are G δ -sets in a uniform way. In this note, we introduce another class of spaces, denoting it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We discuss some properties of k-c-semistratifiable spaces. We prove that a T 2 -space X is a k-c-semistratifiable space if and only if X has a g function which satisfies the following conditions: (1) For each x X , { x } = { g ( x , n ) : n } and g ( x , n + 1 ) g ( x , n ) for each...

Global behavior of a third order rational difference equation

Raafat Abo-Zeid (2014)

Mathematica Bohemica

Similarity:

In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation x n + 1 = a x n x n - 1 - b x n + c x n - 2 , n 0 where a , b , c are positive real numbers and the initial conditions x - 2 , x - 1 , x 0 are real numbers. We show that every admissible solution of that equation converges to zero if either a < c or a > c with ( a - c ) / b < 1 . When a > c with ( a - c ) / b > 1 , we prove that every admissible solution is unbounded. Finally, when a = c , we prove that every admissible solution converges to zero.