The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Set vertex colorings and joins of graphs”

Radio antipodal colorings of graphs

Gary Chartrand, David Erwin, Ping Zhang (2002)

Mathematica Bohemica

Similarity:

A radio antipodal coloring of a connected graph G with diameter d is an assignment of positive integers to the vertices of G , with x V ( G ) assigned c ( x ) , such that d ( u , v ) + | c ( u ) - c ( v ) | d for every two distinct vertices u , v of G , where d ( u , v ) is the distance between u and v in G . The radio antipodal coloring number a c ( c ) of a radio antipodal coloring c of G is the maximum color assigned to a vertex of G . The radio antipodal chromatic number a c ( G ) of G is min { a c ( c ) } over all radio antipodal colorings c of G . Radio antipodal chromatic numbers...

Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph

D. Ali Mojdeh (2006)

Discussiones Mathematicae Graph Theory

Similarity:

In a given graph G = (V,E), a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a c ≥ χ(G) coloring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by d(G,c). The d(G = Cₘ × Kₙ, χ(G)) has been studied. In this note we show that the exact value of defining number d(G =...

On detectable colorings of graphs

Henry Escuadro, Ping Zhang (2005)

Mathematica Bohemica

Similarity:

Let G be a connected graph of order n 3 and let c E ( G ) { 1 , 2 , ... , k } be a coloring of the edges of G (where adjacent edges may be colored the same). For each vertex v of G , the color code of v with respect to c is the k -tuple c ( v ) = ( a 1 , a 2 , , a k ) , where a i is the number of edges incident with v that are colored i ( 1 i k ). The coloring c is detectable if distinct vertices have distinct color codes. The detection number det ( G ) of G is the minimum positive integer k for which G has a detectable k -coloring. We establish a formula for the...

On the dominator colorings in trees

Houcine Boumediene Merouane, Mustapha Chellali (2012)

Discussiones Mathematicae Graph Theory

Similarity:

In a graph G, a vertex is said to dominate itself and all its neighbors. A dominating set of a graph G is a subset of vertices that dominates every vertex of G. The domination number γ(G) is the minimum cardinality of a dominating set of G. A proper coloring of a graph G is a function from the set of vertices of the graph to a set of colors such that any two adjacent vertices have different colors. A dominator coloring of a graph G is a proper coloring such that every vertex of V dominates...

On stratification and domination in graphs

Ralucca Gera, Ping Zhang (2006)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class), where the vertices in one class are colored red and those in the other class are colored blue. Let F be a 2-stratified graph rooted at some blue vertex v. An F-coloring of a graph is a red-blue coloring of the vertices of G in which every blue vertex v belongs to a copy of F rooted at v. The F-domination number γ F ( G ) is the minimum number of red vertices in an F-coloring...