On an Einstein projective Sasakian manifold.
Khan, Quddus (2006)
Novi Sad Journal of Mathematics
Similarity:
Khan, Quddus (2006)
Novi Sad Journal of Mathematics
Similarity:
Sinha, B.B., Sharma, Ramesh (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
De, U.C., Shaikh, A.A., Biswas, Sudipta (2003)
Novi Sad Journal of Mathematics
Similarity:
Hiroshi Endo (1991)
Colloquium Mathematicae
Similarity:
For Sasakian manifolds, Matsumoto and Chūman [6] defined the contact Bochner curvature tensor (see also Yano [9]). Hasegawa and Nakane [4] and Ikawa and Kon [5] have studied Sasakian manifolds with vanishing contact Bochner curvature tensor. Such manifolds were studied in the theory of submanifolds by Yano ([9] and [10]). In this paper we define an extended contact Bochner curvature tensor in K-contact Riemannian manifolds and call it the E-contact Bochner curvature tensor. Then we show...
Deszcz, R. (1996)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Takano, Kazuhiko (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Das, Lovejoy (2007)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Filip Defever, Ryszard Deszcz (1993)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
R. Sharma (1982)
Matematički Vesnik
Similarity:
Endo, Hiroshi (1994)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Dorota Łuczyszyn (2005)
Open Mathematics
Similarity:
Let B be the Bochner curvature tensor of a para-Kählerian manifold. It is proved that if the manifold is Bochner parallel (∇ B = 0), then it is Bochner flat (B = 0) or locally symmetric (∇ R = 0). Moreover, we define the notion of tha paraholomorphic pseudosymmetry of a para-Kählerian manifold. We find necessary and sufficient conditions for a Bochner flat para-Kählerian manifold to be paraholomorphically pseudosymmetric. Especially, in the case when the Ricci operator is diagonalizable,...