Displaying similar documents to “An elementary approach to some questions in higher order smoothness in Banach spaces.”

On uniformly Gâteaux smooth C ( n ) -smooth norms on separable Banach spaces

Marián J. Fabián, Václav Zizler (1999)

Czechoslovak Mathematical Journal

Similarity:

Every separable Banach space with C ( n ) -smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and C ( n ) -smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.

Some properties on the closed subsets in Banach spaces

Abdelhakim Maaden, Abdelkader Stouti (2006)

Archivum Mathematicum

Similarity:

It is shown that under natural assumptions, there exists a linear functional does not have supremum on a closed bounded subset. That is the James Theorem for non-convex bodies. Also, a non-linear version of the Bishop-Phelps Theorem and a geometrical version of the formula of the subdifferential of the sum of two functions are obtained.

Smoothness in Banach spaces. Selected problems.

Marian Fabian, Vicente Montesinos, Václav Zizler (2006)

RACSAM

Similarity:

This is a short survey on some recent as well as classical results and open problems in smoothness and renormings of Banach spaces. Applications in general topology and nonlinear analysis are considered. A few new results and new proofs are included. An effort has been made that a young researcher may enjoy going through it without any special pre-requisites and get a feeling about this area of Banach space theory. Many open problems of different level of difficulty are discussed. For...