Displaying similar documents to “On the p-drop theorem, 1 ≤ p ≤∞.”

Quotients of Continuous Convex Functions on Nonreflexive Banach Spaces

P. Holický, O. F. K. Kalenda, L. Veselý, L. Zajíček (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

On each nonreflexive Banach space X there exists a positive continuous convex function f such that 1/f is not a d.c. function (i.e., a difference of two continuous convex functions). This result together with known ones implies that X is reflexive if and only if each everywhere defined quotient of two continuous convex functions is a d.c. function. Our construction also gives a stronger version of Klee's result concerning renormings of nonreflexive spaces and non-norm-attaining functionals. ...

Paraconvex functions and paraconvex sets

Huynh Van Ngai, Jean-Paul Penot (2008)

Studia Mathematica

Similarity:

We study a class of functions which contains both convex functions and differentiable functions whose derivatives are locally Lipschitzian or Hölderian. This class is a subclass of the class of approximately convex functions. It enjoys refined properties. We also introduce a class of sets whose associated distance functions are of that type. We discuss the properties of the metric projections on such sets under some assumptions on the geometry of the Banach spaces in which they are embedded....

Convex-compact sets and Banach discs

I. Monterde, Vicente Montesinos (2009)

Czechoslovak Mathematical Journal

Similarity:

Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual E ' of a locally convex space E is the σ ( E ' , E ) -closure of the union of countably many σ ( E ' , E ) -relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.