Uniformly convex and uniformly smooth convex functions

Dominique Azé; Jean-Paul Penot

Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)

  • Volume: 4, Issue: 4, page 705-730
  • ISSN: 0240-2963

How to cite

top

Azé, Dominique, and Penot, Jean-Paul. "Uniformly convex and uniformly smooth convex functions." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.4 (1995): 705-730. <http://eudml.org/doc/73364>.

@article{Azé1995,
author = {Azé, Dominique, Penot, Jean-Paul},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {uniform smoothness; convex function; uniform convexity; subdifferentials; maximal monotone operators},
language = {eng},
number = {4},
pages = {705-730},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Uniformly convex and uniformly smooth convex functions},
url = {http://eudml.org/doc/73364},
volume = {4},
year = {1995},
}

TY - JOUR
AU - Azé, Dominique
AU - Penot, Jean-Paul
TI - Uniformly convex and uniformly smooth convex functions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 4
SP - 705
EP - 730
LA - eng
KW - uniform smoothness; convex function; uniform convexity; subdifferentials; maximal monotone operators
UR - http://eudml.org/doc/73364
ER -

References

top
  1. [1] Asplund ( E.) .— Fréchet Differentiability of convex functions, Acta Matematica121 (1967), pp. 31-47. Zbl0162.17501MR231199
  2. [2] Asplund ( E.) .— Positivity of duality mappings, Bull. Am. Math. Soc.73 (1967), pp. 200-203. Zbl0149.36202MR206663
  3. [3] Asplund ( E.) and Rockafellar ( R.T.) .— Gradients of convex functions, Trans. Am. Math. Soc.139 (1969), pp. 443-467. Zbl0181.41901MR240621
  4. [4] Attouch ( H.) and Wets ( R.J.-B.) .— A quantitative approach via epigraphic distances to stability of strong local minimizers, Technical report No 87-01, Univ. of Perpignan (1987). 
  5. [5] Aubin ( J.-P.) and Ekeland ( I.) .— Nonlinear applied analysis, J. Wiley, New York (1984). Zbl0641.47066MR749753
  6. [6] Auslender ( A.) .— Optimisation — Méthodes numériques, Masson, Paris (1976). Zbl0326.90057MR441204
  7. [7] Beauzamy ( B.) .— Introduction to Banach spaces and their geometry, Mathematical Studies68, North-Holland, Amsterdam (1982). Zbl0491.46014MR670943
  8. [8] Bishop ( E.) and Phelps ( R.R.) .— The support functionals of a convex set, In Convexity edited by P. Klee, Proc. Symp. Pure Math.7, Am. Math. Soc.Providence (1963), pp. 27-35. Zbl0149.08601MR154092
  9. [9] Bröndsted ( A.) and Rockafellar ( R.T.) .— On the subdifferentiability of convex functions, Proc. Am. Math. Soc.16 (1965), pp. 605-611. Zbl0141.11801MR178103
  10. [10] Browder ( F.E.) .— Problèmes non linéaires, Presses de l'Université de Montréal15 (1966). Zbl0153.17302
  11. [11] Bynum ( J.C.) .— Characterizations of uniform convexity, Pac. J. Math.38, No 3 (1971), pp. 577-581. Zbl0229.46019MR305034
  12. [12] Ciarlet ( P.G.) .- Introduction à l'analyse numérique matricielle et à l'optimisation, Masson, Paris (1982). Zbl0488.65001MR680778
  13. [13] Cioranescu ( I.) .— Duality mappings in the nonlinear functional analysis, Ed. Acad. R.S.R., Bucharest (1974) (in Romanian). MR383157
  14. [14] Diestel ( J.) .— Geometry of Banach spaces, selected topics, Lecture Notes in Mathematics485, Springer, Berlin (1975). Zbl0307.46009MR461094
  15. [15] Donchev ( A.L.) .— Perturbations, approximations and sensitivity analysis of optimal control systems, SpringerLecture Notes in Control52 (1984). Zbl0512.49001MR790847
  16. [16] Dunn ( J.C.) .— Convexity, monotonicity and gradient processes in Hilbert spaces, J. Math. Anal. Appl.53 (1976), pp. 145-158. Zbl0321.49025MR388176
  17. [17] Ekeland ( I.) .— Two results in convex analysis, in "Optimization and related fields", Ed. by R. Conti, E. de Giorgi and F. Giannessi, Lecture Notes in Mathematics1190, SpringerBerlin (1986). Zbl0589.49007MR858352
  18. [18] Figiel ( T.) .— On the moduli of convexity and smoothness, Stud. Math.56 (1976), pp. 121-155. Zbl0344.46052MR425581
  19. [19] Jeyakumar ( V.) . — On subgradient duality with strong and weak convex functions, J. Austr. Math. Soc.40, Ser. A (1986), 143-152. Zbl0598.90094MR817834
  20. [20] Jeyakumar ( V.) . — p-convexity and second order duality, Util. Math.29 (1986), pp. 71-85. Zbl0557.90080MR846192
  21. [21] Karmanov ( V.) .— Programmation Mathématique, French translation, Mir, Moscow (1975). Zbl0379.90068
  22. [22] Levitin ( E.) and Poljak ( B.), .— Minimization methods in the presence of constraints, Z. Vycisl. Mat. i. Fiz.6, No 5 (1966), pp. 787-823. Zbl0184.38902MR211590
  23. [23] Levitin ( E.) and Poljak ( B.) .— Convergence of minimizing sequences in conditional extremum problems, Sov. Math. Dokl.7 (1967), pp. 764-767. Zbl0161.07002MR199016
  24. [24] Lucchetti ( R.) and Patrone ( F.) .— Hadamard and Tyhonov well-posedness of a certain class of convex functions, J. Math. Anal. Appl.88 (1982), pp. 204-215. Zbl0487.49013MR661413
  25. [25] Lyubich ( Y.) and Maistrovski ( G.) .— The general theory of relaxation processes for convex functionals, Russ. Math. Surv.25 (1970), pp. 57-117. Zbl0207.45001
  26. [26] Milman ( V.D.) .— A certain transformation of convex functions and a duality of the β and δ characteristics of a β space, Dokl. Akad. Nauk. SSSR187 (1969), pp. 33-45. Zbl0188.43503MR256138
  27. [27] Psenitchny ( B.) and Daniline ( Y.) .— Méthodes numériques dans les problèmes d'extremum, French translation, Mir, Moskow (1975). 
  28. [28] Penot ( J.-P.) .— Metric regularity, openness and Lipschitzian behaviour of multifunctions, Nonlinear Anal. Theory Methods Appl.13, No 6 (1989), pp. 629-643. Zbl0687.54015MR998509
  29. [29] Penot ( J.-P.) and Volle ( V.) .— Inversion of real valued functions and applications, Z.O.R. Methods and Models of Operations Research34 (1990), pp. 117-141. Zbl0718.49012MR1045821
  30. [30] Penot ( J.-P.) and Volle ( M.) .— On strongly convex and paraconvex dualities, in "Generalized Convexity and Fractional Programming with Economics Applications", Proc. Pisa. Italy (1988), A. Cambini et al. Eds. Lecture Notes in Economics and Mathematical Systems345, Springer VerlagBerlin (1990), pp. 198-218. Zbl0701.49038MR1117933
  31. [31] Poljak ( B.) . — Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math. Dokl.7 (1967), pp. 72-75. Zbl0171.09501MR198307
  32. [32] Prüss ( J.) . — A Characterization of uniform convexity and application to accretive operators, Hiroshima Math. J.11 (1981), pp. 229-234. Zbl0464.47035MR620534
  33. [33] Roberts ( A.W.) and Varberg ( D.) .— Convex functions, Academic Press, New York (1973). Zbl0271.26009MR442824
  34. [34] Rockafellar ( R.T.) .- Monotone operators and the proximal point algorithm, SIAM J. Control Opt.14 (1976), pp. 877-898. Zbl0358.90053MR410483
  35. [35] Šmulyan ( V.L.) .— Sur la dérivabilité de la norme dans l'espace de Banach, Dokl. Acad. Naukl. SSSR, 27 (1940), pp. 643-648. Zbl0023.32604MR2704
  36. [36] Vial ( J.P.) .— Strong convexity of sets and functions, J. Math. Econ.9 (1982) pp. 187-205. Zbl0479.52005MR637263
  37. [37] Vial ( J.-P.) .— Strong and weak convexity of sets and functions, Math. Oper. Res.8 (1983), pp. 231-259. Zbl0526.90077MR707055
  38. [38] Vladimirov ( A.A.), Nesterov ( Yu E.) and Chekanov ( Yu N.) .— On uniformly convex functionals, Vest. Mosk. Univ.3, Ser. XV (1978), pp. 12-23. Zbl0442.47046MR516874
  39. [39] Vladimirov ( A.A.), Nesterov ( Yu E.) and Chekanov ( Yu N.) .— On uniformly quasi-convex functionals, Vest. Mosk. Univ.4, Ser. XV (1978), pp. 18-27. Zbl0453.47047MR525130
  40. [40] Volle ( M.) Personal communication. 
  41. [41] Zalinescu ( C.) .— On uniformly convex functions, J. Math. Anal. Appl.95 (1983), pp. 344-374. Zbl0519.49010MR716088
  42. [42] Zolezzi ( T.) .— On equiwellset minimum problems, Appl. Math. Optimization4 (1978), pp. 209-223. Zbl0381.90105MR493627

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.