Uniformly convex and uniformly smooth convex functions
Dominique Azé; Jean-Paul Penot
Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)
- Volume: 4, Issue: 4, page 705-730
- ISSN: 0240-2963
Access Full Article
topHow to cite
topAzé, Dominique, and Penot, Jean-Paul. "Uniformly convex and uniformly smooth convex functions." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.4 (1995): 705-730. <http://eudml.org/doc/73364>.
@article{Azé1995,
author = {Azé, Dominique, Penot, Jean-Paul},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {uniform smoothness; convex function; uniform convexity; subdifferentials; maximal monotone operators},
language = {eng},
number = {4},
pages = {705-730},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Uniformly convex and uniformly smooth convex functions},
url = {http://eudml.org/doc/73364},
volume = {4},
year = {1995},
}
TY - JOUR
AU - Azé, Dominique
AU - Penot, Jean-Paul
TI - Uniformly convex and uniformly smooth convex functions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 4
SP - 705
EP - 730
LA - eng
KW - uniform smoothness; convex function; uniform convexity; subdifferentials; maximal monotone operators
UR - http://eudml.org/doc/73364
ER -
References
top- [1] Asplund ( E.) .— Fréchet Differentiability of convex functions, Acta Matematica121 (1967), pp. 31-47. Zbl0162.17501MR231199
- [2] Asplund ( E.) .— Positivity of duality mappings, Bull. Am. Math. Soc.73 (1967), pp. 200-203. Zbl0149.36202MR206663
- [3] Asplund ( E.) and Rockafellar ( R.T.) .— Gradients of convex functions, Trans. Am. Math. Soc.139 (1969), pp. 443-467. Zbl0181.41901MR240621
- [4] Attouch ( H.) and Wets ( R.J.-B.) .— A quantitative approach via epigraphic distances to stability of strong local minimizers, Technical report No 87-01, Univ. of Perpignan (1987).
- [5] Aubin ( J.-P.) and Ekeland ( I.) .— Nonlinear applied analysis, J. Wiley, New York (1984). Zbl0641.47066MR749753
- [6] Auslender ( A.) .— Optimisation — Méthodes numériques, Masson, Paris (1976). Zbl0326.90057MR441204
- [7] Beauzamy ( B.) .— Introduction to Banach spaces and their geometry, Mathematical Studies68, North-Holland, Amsterdam (1982). Zbl0491.46014MR670943
- [8] Bishop ( E.) and Phelps ( R.R.) .— The support functionals of a convex set, In Convexity edited by P. Klee, Proc. Symp. Pure Math.7, Am. Math. Soc.Providence (1963), pp. 27-35. Zbl0149.08601MR154092
- [9] Bröndsted ( A.) and Rockafellar ( R.T.) .— On the subdifferentiability of convex functions, Proc. Am. Math. Soc.16 (1965), pp. 605-611. Zbl0141.11801MR178103
- [10] Browder ( F.E.) .— Problèmes non linéaires, Presses de l'Université de Montréal15 (1966). Zbl0153.17302
- [11] Bynum ( J.C.) .— Characterizations of uniform convexity, Pac. J. Math.38, No 3 (1971), pp. 577-581. Zbl0229.46019MR305034
- [12] Ciarlet ( P.G.) .- Introduction à l'analyse numérique matricielle et à l'optimisation, Masson, Paris (1982). Zbl0488.65001MR680778
- [13] Cioranescu ( I.) .— Duality mappings in the nonlinear functional analysis, Ed. Acad. R.S.R., Bucharest (1974) (in Romanian). MR383157
- [14] Diestel ( J.) .— Geometry of Banach spaces, selected topics, Lecture Notes in Mathematics485, Springer, Berlin (1975). Zbl0307.46009MR461094
- [15] Donchev ( A.L.) .— Perturbations, approximations and sensitivity analysis of optimal control systems, SpringerLecture Notes in Control52 (1984). Zbl0512.49001MR790847
- [16] Dunn ( J.C.) .— Convexity, monotonicity and gradient processes in Hilbert spaces, J. Math. Anal. Appl.53 (1976), pp. 145-158. Zbl0321.49025MR388176
- [17] Ekeland ( I.) .— Two results in convex analysis, in "Optimization and related fields", Ed. by R. Conti, E. de Giorgi and F. Giannessi, Lecture Notes in Mathematics1190, SpringerBerlin (1986). Zbl0589.49007MR858352
- [18] Figiel ( T.) .— On the moduli of convexity and smoothness, Stud. Math.56 (1976), pp. 121-155. Zbl0344.46052MR425581
- [19] Jeyakumar ( V.) . — On subgradient duality with strong and weak convex functions, J. Austr. Math. Soc.40, Ser. A (1986), 143-152. Zbl0598.90094MR817834
- [20] Jeyakumar ( V.) . — p-convexity and second order duality, Util. Math.29 (1986), pp. 71-85. Zbl0557.90080MR846192
- [21] Karmanov ( V.) .— Programmation Mathématique, French translation, Mir, Moscow (1975). Zbl0379.90068
- [22] Levitin ( E.) and Poljak ( B.), .— Minimization methods in the presence of constraints, Z. Vycisl. Mat. i. Fiz.6, No 5 (1966), pp. 787-823. Zbl0184.38902MR211590
- [23] Levitin ( E.) and Poljak ( B.) .— Convergence of minimizing sequences in conditional extremum problems, Sov. Math. Dokl.7 (1967), pp. 764-767. Zbl0161.07002MR199016
- [24] Lucchetti ( R.) and Patrone ( F.) .— Hadamard and Tyhonov well-posedness of a certain class of convex functions, J. Math. Anal. Appl.88 (1982), pp. 204-215. Zbl0487.49013MR661413
- [25] Lyubich ( Y.) and Maistrovski ( G.) .— The general theory of relaxation processes for convex functionals, Russ. Math. Surv.25 (1970), pp. 57-117. Zbl0207.45001
- [26] Milman ( V.D.) .— A certain transformation of convex functions and a duality of the β and δ characteristics of a β space, Dokl. Akad. Nauk. SSSR187 (1969), pp. 33-45. Zbl0188.43503MR256138
- [27] Psenitchny ( B.) and Daniline ( Y.) .— Méthodes numériques dans les problèmes d'extremum, French translation, Mir, Moskow (1975).
- [28] Penot ( J.-P.) .— Metric regularity, openness and Lipschitzian behaviour of multifunctions, Nonlinear Anal. Theory Methods Appl.13, No 6 (1989), pp. 629-643. Zbl0687.54015MR998509
- [29] Penot ( J.-P.) and Volle ( V.) .— Inversion of real valued functions and applications, Z.O.R. Methods and Models of Operations Research34 (1990), pp. 117-141. Zbl0718.49012MR1045821
- [30] Penot ( J.-P.) and Volle ( M.) .— On strongly convex and paraconvex dualities, in "Generalized Convexity and Fractional Programming with Economics Applications", Proc. Pisa. Italy (1988), A. Cambini et al. Eds. Lecture Notes in Economics and Mathematical Systems345, Springer VerlagBerlin (1990), pp. 198-218. Zbl0701.49038MR1117933
- [31] Poljak ( B.) . — Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math. Dokl.7 (1967), pp. 72-75. Zbl0171.09501MR198307
- [32] Prüss ( J.) . — A Characterization of uniform convexity and application to accretive operators, Hiroshima Math. J.11 (1981), pp. 229-234. Zbl0464.47035MR620534
- [33] Roberts ( A.W.) and Varberg ( D.) .— Convex functions, Academic Press, New York (1973). Zbl0271.26009MR442824
- [34] Rockafellar ( R.T.) .- Monotone operators and the proximal point algorithm, SIAM J. Control Opt.14 (1976), pp. 877-898. Zbl0358.90053MR410483
- [35] Šmulyan ( V.L.) .— Sur la dérivabilité de la norme dans l'espace de Banach, Dokl. Acad. Naukl. SSSR, 27 (1940), pp. 643-648. Zbl0023.32604MR2704
- [36] Vial ( J.P.) .— Strong convexity of sets and functions, J. Math. Econ.9 (1982) pp. 187-205. Zbl0479.52005MR637263
- [37] Vial ( J.-P.) .— Strong and weak convexity of sets and functions, Math. Oper. Res.8 (1983), pp. 231-259. Zbl0526.90077MR707055
- [38] Vladimirov ( A.A.), Nesterov ( Yu E.) and Chekanov ( Yu N.) .— On uniformly convex functionals, Vest. Mosk. Univ.3, Ser. XV (1978), pp. 12-23. Zbl0442.47046MR516874
- [39] Vladimirov ( A.A.), Nesterov ( Yu E.) and Chekanov ( Yu N.) .— On uniformly quasi-convex functionals, Vest. Mosk. Univ.4, Ser. XV (1978), pp. 18-27. Zbl0453.47047MR525130
- [40] Volle ( M.) Personal communication.
- [41] Zalinescu ( C.) .— On uniformly convex functions, J. Math. Anal. Appl.95 (1983), pp. 344-374. Zbl0519.49010MR716088
- [42] Zolezzi ( T.) .— On equiwellset minimum problems, Appl. Math. Optimization4 (1978), pp. 209-223. Zbl0381.90105MR493627
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.