Displaying similar documents to “Shuffles of Min.”

Extreme distribution functions of copulas

Manuel Úbeda-Flores (2008)

Kybernetika

Similarity:

In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.

On sums of dependent uniformly distributed random variables.

Claudi Alsina, Eduard Bonet (1979)

Stochastica

Similarity:

We study and solve several functional equations which yield necessary and sufficient conditions for the sum of two uniformly distributed random variables to be uniformly distributed.

Constructing copulas by means of pairs of order statistics

Ali Dolati, Manuel Úbeda-Flores (2009)

Kybernetika

Similarity:

In this paper, we introduce two transformations on a given copula to construct new and recover already-existent families. The method is based on the choice of pairs of order statistics of the marginal distributions. Properties of such transformations and their effects on the dependence and symmetry structure of a copula are studied.