Displaying similar documents to “Ant Colony Optimisation: models and applications.”

A review on the ant colony optimization metaheuristic: basis, models and new trends.

Oscar Cordón, Francisco Herrera, Thomas Stützle (2002)

Mathware and Soft Computing

Similarity:

Ant Colony Optimization (ACO) is a recent metaheuristic method that is inspired by the behavior of real ant colonies. In this paper, we review the underlying ideas of this approach that lead from the biological inspiration to the ACO metaheuristic, which gives a set of rules of how to apply ACO algorithms to challenging combinatorial problems. We present some of the algorithms that were developed under this framework, give an overview of current applications, and analyze the relationship...

Editorial

Clarisse Dhaenens, Patrick Siarry, El-Ghazali Talbi (2008)

RAIRO - Operations Research

Similarity:

Experiments with variants of ant algorithms.

Thomas Stützle, Sebastian Linke (2002)

Mathware and Soft Computing

Similarity:

A number of extensions of Ant System, the first ant colony optimization (ACO) algorithm, were proposed in the literature. These extensions typically achieve much improved computational results when compared to the original Ant System. However, many design choices of Ant System are left untouched including the fact that solutions are constructed, that real-numbers are used to simulate pheromone trails, and that explicit pheromone evaporation is used. In this article we experimentally...

A novel generalized oppositional biogeography-based optimization algorithm: application to peak to average power ratio reduction in OFDM systems

Sotirios K. Goudos (2016)

Open Mathematics

Similarity:

A major drawback of orthogonal frequency division multiplexing (OFDM) signals is the high value of peak to average power ratio (PAPR). Partial transmit sequences (PTS) is a popular PAPR reduction method with good PAPR reduction performance, but its search complexity is high. In this paper, in order to reduce PTS search complexity we propose a new technique based on biogeography-based optimization (BBO). More specifically, we present a new Generalized Oppositional Biogeography Based Optimization...

Towards a theory of practice in metaheuristics design: A machine learning perspective

Mauro Birattari, Mark Zlochin, Marco Dorigo (2006)

RAIRO - Theoretical Informatics and Applications

Similarity:

A number of methodological papers published during the last years testify that a need for a thorough revision of the research methodology is felt by the operations research community – see, for example, [Barr (1995) 9–32; Eiben and Jelasity, 582–587; Hooker, (1995) 33–42; Rardin and Uzsoy, (2001) 261–304]. In particular, the performance evaluation of nondeterministic methods, including widely studied metaheuristics such as evolutionary...

Meta-optimization of bio-inspired algorithms for antenna array design

Virgilio Zúñiga-Grajeda, Alberto Coronado-Mendoza, Kelly Joel Gurubel-Tun (2018)

Kybernetika

Similarity:

In this article, a technique called Meta-Optimization is used to enhance the effectiveness of bio-inspired algorithms that solve antenna array synthesis problems. This technique consists on a second optimization layer that finds the best behavioral parameters for a given algorithm, which allows to achieve better results. Bio-inspired computational methods are useful to solve complex multidimensional problems such as the design of antenna arrays. However, their performance depends heavily...