Displaying similar documents to “Convex domains and unique continuation at the boundary.”

A note on the Rellich formula in Lipschitz domains.

Alano Ancona (1998)

Publicacions Matemàtiques

Similarity:

Let L be a symmetric second order uniformly elliptic operator in divergence form acting in a bounded Lipschitz domain ­Ω of R and having Lipschitz coefficients in Ω­. It is shown that the Rellich formula with respect to Ω­ and L extends to all functions in the domain D = {u ∈ H (Ω­); L(u) ∈ L(­Ω)} of L. This answers a question of A. Chaïra and G. Lebeau.

Boundary behavior of subharmonic functions in nontangential accessible domains

Shiying Zhao (1994)

Studia Mathematica

Similarity:

The following results concerning boundary behavior of subharmonic functions in the unit ball of n are generalized to nontangential accessible domains in the sense of Jerison and Kenig [7]: (i) The classical theorem of Littlewood on the radial limits. (ii) Ziomek’s theorem on the L p -nontangential limits. (iii) The localized version of the above two results and nontangential limits of Green potentials under a certain nontangential condition.

Oblique derivative problems for the laplacian in Lipschitz domains.

Jill Pipher (1987)

Revista Matemática Iberoamericana

Similarity:

The aim of this paper is to extend the results of Calderón [1] and Kenig-Pipher [12] on solutions to the oblique derivative problem to the case where the data is assumed to be BMO or Hölder continuous.

A remark on gradients of harmonic functions.

Wen Sheng Wang (1995)

Revista Matemática Iberoamericana

Similarity:

In any C domain, there is nonzero harmonic function C continuous up to the boundary such that the function and its gradient on the boundary vanish on a set of positive measure.

Comparisons of kernel functions boundary Harnack principle and relative Fatou theorem on Lipschitz domains

Jang-Mei G. Wu (1978)

Annales de l'institut Fourier

Similarity:

On a Lipschitz domain D in R n , three theorems on harmonic functions are proved. The first (boundary Harnack principle) compares two positive harmonic functions at interior points near an open subset of the boundary where both functions vanish. The second extends some familiar geometric facts about the Poisson kernel on a sphere to the Poisson kernel on D . The third theorem, on non-tangential limits of quotient of two positive harmonic functions in D , generalizes Doob’s relative Fatou...