Boundary behavior of subharmonic functions in nontangential accessible domains

Shiying Zhao

Studia Mathematica (1994)

  • Volume: 108, Issue: 1, page 25-48
  • ISSN: 0039-3223

Abstract

top
The following results concerning boundary behavior of subharmonic functions in the unit ball of n are generalized to nontangential accessible domains in the sense of Jerison and Kenig [7]: (i) The classical theorem of Littlewood on the radial limits. (ii) Ziomek’s theorem on the L p -nontangential limits. (iii) The localized version of the above two results and nontangential limits of Green potentials under a certain nontangential condition.

How to cite

top

Zhao, Shiying. "Boundary behavior of subharmonic functions in nontangential accessible domains." Studia Mathematica 108.1 (1994): 25-48. <http://eudml.org/doc/216038>.

@article{Zhao1994,
abstract = {The following results concerning boundary behavior of subharmonic functions in the unit ball of $ℝ^n$ are generalized to nontangential accessible domains in the sense of Jerison and Kenig [7]: (i) The classical theorem of Littlewood on the radial limits. (ii) Ziomek’s theorem on the $L^p$-nontangential limits. (iii) The localized version of the above two results and nontangential limits of Green potentials under a certain nontangential condition.},
author = {Zhao, Shiying},
journal = {Studia Mathematica},
keywords = {subharmonic function; Green potential; boundary limit; NTA domain; subharmonic functions; nontangential accessible domains in the sense of Jerison and Kenig; Green potentials},
language = {eng},
number = {1},
pages = {25-48},
title = {Boundary behavior of subharmonic functions in nontangential accessible domains},
url = {http://eudml.org/doc/216038},
volume = {108},
year = {1994},
}

TY - JOUR
AU - Zhao, Shiying
TI - Boundary behavior of subharmonic functions in nontangential accessible domains
JO - Studia Mathematica
PY - 1994
VL - 108
IS - 1
SP - 25
EP - 48
AB - The following results concerning boundary behavior of subharmonic functions in the unit ball of $ℝ^n$ are generalized to nontangential accessible domains in the sense of Jerison and Kenig [7]: (i) The classical theorem of Littlewood on the radial limits. (ii) Ziomek’s theorem on the $L^p$-nontangential limits. (iii) The localized version of the above two results and nontangential limits of Green potentials under a certain nontangential condition.
LA - eng
KW - subharmonic function; Green potential; boundary limit; NTA domain; subharmonic functions; nontangential accessible domains in the sense of Jerison and Kenig; Green potentials
UR - http://eudml.org/doc/216038
ER -

References

top
  1. [1] L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393-399. Zbl0107.08402
  2. [2] B. E. J. Dahlberg, On estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 272-288. Zbl0406.28009
  3. [3] B. E. J. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain, Indiana Univ. Math. J. 27 (1978), 515-526. Zbl0402.31011
  4. [4] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, New York, 1984. 
  5. [5] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. Zbl0176.00801
  6. [6] L. L. Helms, Introduction of Potential Theory, Wiley-Interscience, New York, 1969. Zbl0188.17203
  7. [7] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46 (1982), 80-147. Zbl0514.31003
  8. [8] D. S. Jerison and C. E. Kenig, Hardy spaces, A , and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247. Zbl0509.30025
  9. [9] J. E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. (2) 28 (1928), 383-394. Zbl54.0516.04
  10. [10] L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281. 
  11. [11] E. M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137-174. Zbl0111.08001
  12. [12] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  13. [13] J. C. Taylor, Fine and nontangential convergence on an NTA domain, Proc. Amer. Math. Soc. 91 (1984), 237-244. Zbl0542.31004
  14. [14] D. Ullrich, Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), 501-518. Zbl0609.31003
  15. [15] K.-O. Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat. 6 (1967), 485-533. Zbl0166.37702
  16. [16] R. Wittmann, Positive harmonic functions on nontangentially accessible domains, Math. Z. 190 (1985), 419-438. Zbl0555.31006
  17. [17] J.-M. Wu, L p -densities and boundary behavior of Green potentials, Indiana Univ. Math. J. 28 (1979), 895-911. Zbl0449.31003
  18. [18] L. Ziomek, On the boundary behavior in the metric L p of subharmonic functions, Studia Math. 29 (1967), 97-105. Zbl0157.42604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.