The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Boundary Harnack principle for separated semihyperbolic repellers, harmonic measure applications.”

Boundary behavior of subharmonic functions in nontangential accessible domains

Shiying Zhao (1994)

Studia Mathematica

Similarity:

The following results concerning boundary behavior of subharmonic functions in the unit ball of n are generalized to nontangential accessible domains in the sense of Jerison and Kenig [7]: (i) The classical theorem of Littlewood on the radial limits. (ii) Ziomek’s theorem on the L p -nontangential limits. (iii) The localized version of the above two results and nontangential limits of Green potentials under a certain nontangential condition.

A remark on gradients of harmonic functions.

Wen Sheng Wang (1995)

Revista Matemática Iberoamericana

Similarity:

In any C domain, there is nonzero harmonic function C continuous up to the boundary such that the function and its gradient on the boundary vanish on a set of positive measure.

Rigidity of harmonic measure

I. Popovici, Alexander Volberg (1996)

Fundamenta Mathematicae

Similarity:

Let J be the Julia set of a conformal dynamics f. Provided that f is polynomial-like we prove that the harmonic measure on J is mutually absolutely continuous with the measure of maximal entropy if and only if f is conformally equivalent to a polynomial. This is no longer true for generalized polynomial-like maps. But for such dynamics the coincidence of classes of these two measures turns out to be equivalent to the existence of a conformal change of variable which reduces the dynamical...

On V. I Smirnov domains.

Jones, Peter W., Smirnov, Stanislav K. (1999)

Annales Academiae Scientiarum Fennicae. Mathematica

Similarity:

On the existence of weighted boundary limits of harmonic functions

Yoshihiro Mizuta (1990)

Annales de l'institut Fourier

Similarity:

We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.

Convex domains and unique continuation at the boundary.

Vilhelm Adolfsson, Luis Escauriaza, Carlos Kenig (1995)

Revista Matemática Iberoamericana

Similarity:

We show that a harmonic function which vanishes continuously on an open set of the boundary of a convex domain cannot have a normal derivative which vanishes on a subset of positive surface measure. We also prove a similar result for caloric functions vanishing on the lateral boundary of a convex cylinder.