Displaying similar documents to “Good metric spaces without good parameterizations.”

On the nonexistence of bilipschitz parametrizations and geometric problems about A-weights.

Stephen Semmes (1996)

Revista Matemática Iberoamericana

Similarity:

How can one recognize when a metric space is bilipschitz equivalent to an Euclidean space? One should not take the abstraction of metric spaces too seriously here; subsets of R are already quite interesting. It is easy to generate geometric conditions which are necessary for bilipschitz equivalence, but it is not clear that such conditions should ever be sufficient. The main point of this paper is that the optimistic conjectures about the existence of bilipschitz parametrizations are...

Some topics concerning homeomorphic parameterizations.

Stephen Semmes (2001)

Publicacions Matemàtiques

Similarity:

In this survey, we consider several questions pertaining to homeomorphisms, including criteria for their existence in certain circumstances, and obstructions to their existence.

Quasisymmetry, measure and a question of Heinonen.

Stephen Semmes (1996)

Revista Matemática Iberoamericana

Similarity:

In this paper we resolve in the affirmative a question of Heinonen on the absolute continuity of quasisymmetric mappings defined on subsets of Euclidean spaces. The main ingredients in the proof are extension results for quasisymmetric mappings and metric doubling measures.

Bilipschitz embeddings of metric spaces into euclidean spaces.

Stephen Semmes (1999)

Publicacions Matemàtiques

Similarity:

When does a metric space admit a bilipschitz embedding into some finite-dimensional Euclidean space? There does not seem to be a simple answer to this question. Results of Assouad [A1], [A2], [A3] do provide a simple answer if one permits some small ("snowflake") deformations of the metric, but unfortunately these deformations immediately disrupt some basic aspects of geometry and analysis, like rectifiability, differentiability, and curves of finite length. Here we discuss a (somewhat...

Smooth quasiregular mappings with branching

Mario Bonk, Juha Heinonen (2004)

Publications Mathématiques de l'IHÉS

Similarity:

We give an example of a 𝒞 3 - ϵ -smooth quasiregular mapping in 3-space with nonempty branch set. Moreover, we show that the branch set of an arbitrary quasiregular mapping in-space has Hausdorff dimension quantitatively bounded away from . By using the second result, we establish a new, qualitatively sharp relation between smoothness and branching.