Displaying similar documents to “Lp-bounds for spherical maximal operators on Zn.”

Hardy space estimates for multilinear operators (II).

Loukas Grafakos (1992)

Revista Matemática Iberoamericana

Similarity:

We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces L(R) into the Hardy spaces H(R). At the endpoint case r = n/(n + m + 1), where m is the highest vanishing moment of the multilinear operator, we prove a weak type result.

Variants of the Calderón-Zygmund theory for L-spaces.

Anthony Carbery (1986)

Revista Matemática Iberoamericana

Similarity:

The purposes of this paper may be described as follows: (i) to provide a useful substitute for the Cotlar-Stein lemma for Lp-spaces (the orthogonality conditions are replaced by certain fairly weak smoothness asumptions); (ii) to investigate the gap between the Hörmander multiplier theorem and the Littman-McCarthy-Rivière example - just how little regularity is really needed? (iii) to simplify and extend the work of Duoandikoetxea...

Fluctuations of brownian motion with drift.

Joseph G. Conlon, Peder Olsen (1999)

Publicacions Matemàtiques

Similarity:

Consider 3-dimensional Brownian motion started on the unit sphere {|x| = 1} with initial density ρ. Let ρt be the first hitting density on the sphere {|x| = t + 1}, t > 0. Then the linear operators T defined by T ρ = ρ form a semigroup with an infinitesimal generator which is approximately the square root of the Laplacian. This paper studies the analogous situation for Brownian motion with a drift , where is small in a suitable scale invariant norm.

Ingham type theorems and applications to control theory

Claudio Baiocchi, Vilmos Komornik, Paola Loreti (1999)

Bollettino dell'Unione Matematica Italiana

Similarity:

Ingham [6] ha migliorato un risultato precedente di Wiener [23] sulle serie di Fourier non armoniche. Modificando la sua funzione di peso noi otteniamo risultati ottimali, migliorando precedenti teoremi di Kahane [9], Castro e Zuazua [3], Jaffard, Tucsnak e Zuazua [7] e di Ullrich [21]. Applichiamo poi questi risultati a problemi di osservabilità simultanea.