The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Generating real maps on a biordered set.”

Generating real maps on a biordered set

Antonio Martinón (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps X from an initial one X , where X is a set endowed with two orders, and * , related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone.

Turbulent maps and their ω-limit sets

F. Balibrea, C. La Paz (1997)

Annales Polonici Mathematici

Similarity:

One-dimensional turbulent maps can be characterized via their ω-limit sets [1]. We give a direct proof of this characterization and get stronger results, which allows us to obtain some other results on ω-limit sets, which previously were difficult to prove.

Multi-invertible maps and their applications

Mirosław Ślosarski (2019)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

In this article, we define multi-invertible, multivalued maps. These mappings are a natural generalization of r-maps (in particular, the singlevalued invertible maps). They have many interesting properties and applications. In this article, the multi-invertible maps are applied to the construction of morphisms and to the theory of coincidence.

Averaging operators and set-valued maps

Valov, Vesko (2014)

Mathematica Balkanica New Series

Similarity:

MSC 2010: 54C35, 54C60. We investigate maps admitting, in general, non-linear averaging operators. Characterizations of maps admitting a normed, weakly additive averaging operator which preserves max (resp., min) and weakly preserves min (resp., max) is obtained. We also describe set-valued maps into completely metrizable spaces admitting lower semi-continuous selections. As a corollary, we obtain a description of surjective maps with a metrizable kernel and complete fibers...