The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the WM points of Orlicz function spaces endowed with Orlicz norm.”

P-convexity of Musielak-Orlicz function spaces of Bochner type.

Pawel. Kolwicz, Ryszard Pluciennik (1998)

Revista Matemática Complutense

Similarity:

It is proved that the Musielak-Orlicz function space LF(mu,X) of Bochner type is P-convex if and only if both spaces LF(mu,R) and X are P-convex. In particular, the Lebesgue-Bochner space Lp(mu,X) is P-convex iff X is P-convex.

Some Structures Related to Metric Projections in Orlicz Spaces

Bor-Luh Lin, Zhongrui Shi (1999)

Colloquium Mathematicae

Similarity:

We discuss k-rotundity, weak k-rotundity, C-k-rotundity, weak C-k-rotundity, k-nearly uniform convexity, k-β property, C-I property, C-II property, C-III property and nearly uniform convexity both pointwise and global in Orlicz function spaces equipped with Luxemburg norm. Applications to continuity for the metric projection at a given point are given in Orlicz function spaces with Luxemburg norm.

Jung constants of Orlicz function spaces.

Zhongdao Ren, Shutao Chen (1997)

Collectanea Mathematica

Similarity:

Estimation of the Jung constants of Orlicz function spaces equipped with either Luxemburg norm or Orlicz norm is given. The exact values of the Jung constants of a class of reflexive Orlicz function spaces have been found by using a new quantitative index of N-functions.