The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On convex functions in c0(w1).”

Extension of smooth functions in infinite dimensions, I: unions of convex sets

C. J. Atkin (2001)

Studia Mathematica

Similarity:

Let f be a smooth function defined on a finite union U of open convex sets in a locally convex Lindelöf space E. If, for every x ∈ U, the restriction of f to a suitable neighbourhood of x admits a smooth extension to the whole of E, then the restriction of f to a union of convex sets that is strictly smaller than U also admits a smooth extension to the whole of E.

Factorization of Montel operators

S. Dierolf, P. Domański (1993)

Studia Mathematica

Similarity:

Consider the following conditions. (a) Every regular LB-space is complete; (b) if an operator T between complete LB-spaces maps bounded sets into relatively compact sets, then T factorizes through a Montel LB-space; (c) for every complete LB-space E the space C (βℕ, E) is bornological. We show that (a) ⇒ (b) ⇒ (c). Moreover, we show that if E is Montel, then (c) holds. An example of an LB-space E with a strictly increasing transfinite sequence of its Mackey derivatives is given. ...

Compact perturbations of linear differential equations in locally convex spaces

S. A. Shkarin (2006)

Studia Mathematica

Similarity:

Herzog and Lemmert have proven that if E is a Fréchet space and T: E → E is a continuous linear operator, then solvability (in [0,1]) of the Cauchy problem ẋ = Tx, x(0) = x₀ for any x₀ ∈ E implies solvability of the problem ẋ(t) = Tx(t) + f(t,x(t)), x(0) = x₀ for any x₀ ∈ E and any continuous map f: [0,1] × E → E with relatively compact image. We prove the same theorem for a large class of locally convex spaces including: • DFS-spaces, i.e., strong duals of Fréchet-Schwartz...

The calculus of operator functions and operator convexity

A. L. Brown, H. L. Vasudeva

Similarity:

The paper is concerned with the Fréchet differentiability and operator convexity of the operator functions on sets of self-adjoint operators on finite-dimensional inner product spaces which are associated with real-valued functions of one or two variables. In Part I it is shown that if a real-valued function is L times continuously differentiable then the associated operator functions are L times Fréchet differentiable with continuous Fréchet derivatives. It is shown that the operator...