Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy

Seán Dineen

Bulletin de la Société Mathématique de France (1975)

  • Volume: 103, page 441-509
  • ISSN: 0037-9484

How to cite

top

Dineen, Seán. "Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy." Bulletin de la Société Mathématique de France 103 (1975): 441-509. <http://eudml.org/doc/87263>.

@article{Dineen1975,
author = {Dineen, Seán},
journal = {Bulletin de la Société Mathématique de France},
language = {eng},
pages = {441-509},
publisher = {Société mathématique de France},
title = {Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy},
url = {http://eudml.org/doc/87263},
volume = {103},
year = {1975},
}

TY - JOUR
AU - Dineen, Seán
TI - Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy
JO - Bulletin de la Société Mathématique de France
PY - 1975
PB - Société mathématique de France
VL - 103
SP - 441
EP - 509
LA - eng
UR - http://eudml.org/doc/87263
ER -

References

top
  1. [1] BOCHNAK (J.) and SICIAK (J.). — Analytic functions in Banach spaces, Studia Math., t. 35, 1970, p. 273-292. Zbl0199.18402MR42 #8275
  2. [2] BOGDANOWITZ (W. M.). — Analytic continuation of holomorphic functions with values in a locally convex space, Proc. Amer. math. Soc., t. 22, 1969, p. 660-666. Zbl0182.19201MR40 #3308
  3. [3] CATHELINEAU (J. L.). — Sur les modules topologiques, J. Math pures et appl., t. 47, 1969, p. 13-57. Zbl0174.16904MR39 #6040
  4. [4] COEURÉ (G.). — Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, Ann. Inst. Fourier, Grenoble, t. 23, 1970, fasc. 1. p. 361-432. Zbl0187.39003
  5. [5] COLOMBEAU (J. F.). — Quelques exemples singuliers d'applications G-analytiques, analytiques et différentiables en dimension infinie, C. R. Acad. Sc. Paris, t. 273, 1971, Série A, p. 158-160. Zbl0221.46035MR44 #765
  6. [6] COLOMBEAU (J. F.). — Sur les applications G-analytiques et analytiques en dimension infinie, " Séminaire P. Lelong, 1971/1972 ", p. 48-58. — Berlin, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 332). Zbl0262.46048MR52 #6418
  7. [7] DINEEN (S.). — Runge's theorem for Banach spaces, Proc. Roy. Irish. Acad., t. 71 (a), 1971, p. 85-89. Zbl0212.14801MR46 #9392
  8. [8] DINEEN (S.). — Unbounded holomorphic functions on a Banach space, J. Lond. math. Soc., t. 4, 1972, p. 461-465. Zbl0244.46015MR45 #5753
  9. [9] DINEEN (S.). — Fonctions analytiques dans les espaces vectoriels topologiques localement convexes, C. R. Acad. Sc. Paris, t. 274, 1972, Série A, p. 544-574. Zbl0229.46024MR45 #877
  10. [10] DINEEN (S.). — Holomorphically complete locally convex topological vector spaces, « Séminaire P. Lelong, 1971/1972 », p. 77-111. — Berlin, Springer-Verlag, 1973, (Lecture Notes in Mathematics, 332). Zbl0278.46005MR51 #13684
  11. [11] DINEEN (S.). — Holomorphically significant properties of topological vector spaces, "Colloque sur les fonctions analytiques de plusieurs variables complexes, Paris, 1972" (to appear in Agora Mathematica, Gauthier-Villars, Paris). 
  12. [12] DINEEN (S.). — Holomorphic functions on locally convex topological vector spaces, I : Locally convex topologies on ℋ(U), Ann. Inst. Fourier, Grenoble, t. 23, 1973, fasc. 1, p. 19-54. Zbl0241.46022MR58 #17843
  13. [13] DINEEN (S.). — Holomorphic functions on locally convex topological vector spaces, II : Pseudo-convex domains, Ann. Inst. Fourier, Grenoble, t. 23, 1973, fasc. 3, p. 155-185. Zbl0266.46019MR58 #22652
  14. [14] DINEEN (S.). — Holomorphic functions and surjective limits, " Proceedings on infinite dimensional holomorphy ", p. 1-12. — Berlin, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 364). Zbl0277.46006MR54 #11057
  15. [15] GROTHENDIECK (A.). — Sur les espaces (F) et (DF), Summa Brasil. Math., t. 3, 1954, p. 57-123. Zbl0058.09803MR17,765b
  16. [16] HIRSCHOWITZ (A.). — Remarques sur les ouverts d'holomorphie d'un produit dénombrable de droites, Ann. Inst. Fourier, Grenoble, t. 22, 1972, p. 255-292. MR49 #11256
  17. [17] HIRSCHOWITZ (A.). — Prolongement analytiques en dimension infinie, Ann. Inst. Fourier, Grenoble, t. 22, 1972, p. 255-292. Zbl0224.32015MR49 #11256
  18. [18] HIRSCHOWITZ (A.). — Sur un théorème de M. A. Zorn, Archiv der Mathematik, t. 23, 1972, p. 77-79. Zbl0239.46037MR46 #6025
  19. [19] HIRSCHOWITZ (A.). — Convexité abstraite et espaces normés, " Séminaire P. Lelong, 1970/1971 ", p. 1-13. — Berlin, Springer-Verlag, 1972 (Lecture Notes in Mathematics, 275). Zbl0257.46109MR52 #6420
  20. [20] HOGBE-NLEND (H.). — Théorie des bornologies et applications. — Berlin, Springer-Verlag, 1970 (Lecture Notes in Mathematics, 213). Zbl0225.46005
  21. [21] HOGBE-NLEND (H.). — Sur la métrisabilité des espaces de fonctions holomorphes en dimension infinie, Bull. Sc. Math, Série 2, t. 97, 1973, p. 29-32. Zbl0271.46017MR48 #6931
  22. [22] HORVATH (J.). — Topological vector spaces and distributions, Vol. I. — Reading, Addison — Wesley publishing Company, 1966 (Addison-Wesley Series in Mathematics). Zbl0143.15101MR34 #4863
  23. [23] HORVATH (J.). — Finite parts of distributions, "Proceedings of the conference on linear operators and approximation", p. 142-158. — Basel, Birkhauser Verlag, 1972 (International Series of numerical Mathematics, 20). Zbl0253.46091MR52 #6409
  24. [24] HUSAIN (T.). — Two new classes of locally convex spaces, Math. Ann., t. 166, 1966, p. 289-299. Zbl0143.34903MR35 #3406
  25. [25] JOSEFSON (B.). — A counterexample to the Levi-problem, " Proceedings on infinite dimensional holomorphy ", p. 168-177. — Berlin, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 364). Zbl0285.32017MR52 #14384
  26. [26] KOETHE (G.). — Topological vector spaces. — Berlin, Springer-Verlag, 1971. Zbl0417.46001
  27. [27] LAZET (D.). — Applications analytiques dans les espaces bornologiques, " Séminaire P. Lelong, 1971/1972 ", p. 1-47. — Berlin, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 332). Zbl0262.46047MR55 #1376
  28. [28] LIGOCKA (E.). — A local factorization of analytic functions and its applications, Studia Math., t. 68, 1973, p. 239-252. Zbl0261.46006MR50 #994
  29. [29] LIGOCKA (E.) and SICIAK (J.). — Weak analytic continuation, Bull. Acad. pol. Sc., t. 20, 1972, p. 461-466. Zbl0241.46013MR47 #5896
  30. [30] NACHBIN (L.). — Topology on spaces of holomorphic mappings. — Berlin, Springer-Verlag, 1969 (Ergebnisse der Mathematik, 47). Zbl0172.39902MR40 #7787
  31. [31] NACHBIN (L.). — Sur les espaces vectoriels topologiques d'applications continues, C. R. Acad. Sc. Paris, t. 271, 1970, Série A, p. 596-598. Zbl0205.12402MR42 #6593
  32. [32] NACHBIN (L.). — Uniformité holomorphe et type exponentiel, " Séminaire P. Lelong, 1970/1971 ", p. 216-224. — Berlin, Springer-Verlag, 1971 (Lecture Notes in Mathematics, 205). Zbl0218.46024
  33. [33] NACHBIN (L.). — On vector valued versus scalar holomorphic continuation, Indag. Math., t. 35, 1973, fasc. 4, p. 352-354. Zbl0271.46018MR48 #9395
  34. [34] NOVERRAZ (PH.). — Fonctions plurisous harmoniques et analytiques dans les espaces vectorials topologiques complexes, Ann. Inst. Fourier, Grenoble, t. 19, 1969, p. 419-493. Zbl0176.09903
  35. [35] NOVERRAZ (PH.). — Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie. — Amsterdam, North-Holland publishing Company, 1973 (Notas de Matematica, 48 ; North-Holland Mathematics Studies, 3). Zbl0251.46049
  36. [36] PIETSCH (A.). — Nuclear locally convex spaces. — Berlin, Springer-Verlag, 1972 (Ergebnisse der Mathematic, 66). Zbl0236.46001MR50 #2853
  37. [37] PISANELLI (D.). — Applications analytiques en dimension infinie, Bull. Sc. math., Série 2, t. 96, 1972, p. 181-191. Zbl0241.46042MR45 #3788
  38. [38] RICKART (C. E.). — Analytic functions of an infinite number of complex variables, Duke Math. J., t. 36, 1969, p. 581-597. Zbl0181.14304MR40 #7819
  39. [39] SCHOTTENLOHER (M.). — Analytische Fortsetzung in Banachraumen, Math. Ann., t. 199, 1972, p. 313-336. Zbl0241.46014MR50 #2566
  40. [40] SCHOTTENLOHER (M.). — ε-product and continuation of analytic mappings, " Colloque d'Analyse, Rio de Janeiro, 1972 ". — Paris, Hermann (to appear). Zbl0308.46044
  41. [41] SCHOTTENLOHER (M.). — The envelope of holomorphy as a functor, " Colloque sur les fonctions analytiques de plusieurs variables complexes, Paris, 1972 " (to appear in Agora Mathematica, Gauthier-Villars). Zbl0309.46043
  42. [42] TARZIOGLU (T.). — On Schwartz spaces, Math. Ann., t. 182, 1969, p. 236-242. Zbl0179.45501MR40 #683
  43. [43] WARNER (S.). — Compact convergence on function spaces, Duke Math. J., t. 25, 1958, p. 265-282. Zbl0081.32802MR21 #1521
  44. [44] ZORN (M. A.). — Gateaux differentiability and essential boundedness, Duke Math. J., t. 12, 1945, p. 579-583. Zbl0061.25001MR7,308a

Citations in EuDML Documents

top
  1. Roberto Luiz Soraggi, Quasi-completeness on the Spaces of Holomorphic Germs
  2. Roberto Luiz Soraggi, Quasi-completeness on the Spaces of Holomorphic Germs
  3. Seán Dineen, Philippe Noverraz, Martin Schottenloher, Le problème de Lévi dans certains espaces vectoriels topologiques localement convexes
  4. Philip J. Boland, Seán Dineen, Holomorphic functions on fully nuclear spaces
  5. Paul D. Berner, Holomorphy on surjective limits of locally convex spaces
  6. Philipp J. Boland, Polynomials and multilinear forms on fully nuclear spaces
  7. Philipe Noverraz, Le problème de Levi en dimension infinie
  8. Martin Schottenloher, The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.