Displaying similar documents to “Asymptotic normality of the integrated square error of a density estimator in the convolution model.”

Change-point estimation from indirect observations. 2. Adaptation

A. Goldenshluger, A. Juditsky, A. Tsybakov, A. Zeevi (2008)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We focus on the problem of adaptive estimation of signal singularities from indirect and noisy observations. A typical example of such a singularity is a discontinuity (change-point) of the signal or of its derivative. We develop a change-point estimator which adapts to the unknown smoothness of a nuisance deterministic component and to an unknown jump amplitude. We show that the proposed estimator attains optimal adaptive rates of convergence. A simulation study demonstrates reasonable...

Minimax and bayes estimation in deconvolution problem

Mikhail Ermakov (2008)

ESAIM: Probability and Statistics

Similarity:

We consider a deconvolution problem of estimating a signal blurred with a random noise. The noise is assumed to be a stationary Gaussian process multiplied by a weight function function where and is a small parameter. The underlying solution is assumed to be infinitely differentiable. For this model we find asymptotically minimax and Bayes estimators. In the case of solutions having finite number of derivatives similar results were obtained in [G.K. Golubev and R.Z. Khasminskii,...

On-line nonparametric estimation.

Rafail Khasminskii (2004)

SORT

Similarity:

A survey of some recent results on nonparametric on-line estimation is presented. The first result deals with an on-line estimation for a smooth signal S(t) in the classic 'signal plus Gaussian white noise' model. Then an analogous on-line estimator for the regression estimation problem with equidistant design is described and justified. Finally some preliminary results related to the on-line estimation for the diffusion observed process are described.

Asymptotic unbiased density estimators

Nicolas W. Hengartner, Éric Matzner-Løber (2009)

ESAIM: Probability and Statistics

Similarity:

This paper introduces a computationally tractable density estimator that has the same asymptotic variance as the classical Nadaraya-Watson density estimator but whose asymptotic bias is zero. We achieve this result using a two stage estimator that applies a multiplicative bias correction to an oversmooth pilot estimator. Simulations show that our asymptotic results are available for samples as low as , where we see an improvement of as much as 20% over the traditionnal estimator. ...

New M-estimators in semi-parametric regression with errors in variables

Cristina Butucea, Marie-Luce Taupin (2008)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In the regression model with errors in variables, we observe i.i.d. copies of (, ) satisfying = ()+ and =+ involving independent and unobserved random variables , , plus a regression function , known up to a finite dimensional . The common densities of the ’s and of the ’s are unknown, whereas the distribution of is completely known. We aim at estimating the parameter by using the observations...