Displaying similar documents to “Small ball properties for Fréchet spaces.”

Factorization of Montel operators

S. Dierolf, P. Domański (1993)

Studia Mathematica

Similarity:

Consider the following conditions. (a) Every regular LB-space is complete; (b) if an operator T between complete LB-spaces maps bounded sets into relatively compact sets, then T factorizes through a Montel LB-space; (c) for every complete LB-space E the space C (βℕ, E) is bornological. We show that (a) ⇒ (b) ⇒ (c). Moreover, we show that if E is Montel, then (c) holds. An example of an LB-space E with a strictly increasing transfinite sequence of its Mackey derivatives is given. ...

On the three-space problem and the lifting of bounded sets.

Susanne Dierolf (1993)

Collectanea Mathematica

Similarity:

We exhibit a general method to show that for several classes of Fréchet spaces the Three-space-problem fails. This method works for instance for the class of distinguished Fréchet spaces, for Fréchet spaces with the density condition and also for dual Fréchet spaces (which gives a negative answer to a question of D. Vogt). An example of a Banach space, which is not a dual Banach space but the strong dual of a DF-space, shows that there are two real different possibilities of defining...

Some aspects of the modern theory of Fréchet spaces.

Klaus D. Bierstedt, José Bonet (2003)

RACSAM

Similarity:

We survey some recent developments in the theory of Fréchet spaces and of their duals. Among other things, Section 4 contains new, direct proofs of properties of, and results on, Fréchet spaces with the density condition, and Section 5 gives an account of the modern theory of general Köthe echelon and co-echelon spaces. The final section is devoted to the developments in tensor products of Fréchet spaces since the negative solution of Grothendieck?s ?problème des topologies?. ...

The topological complexity of sets of convex differentiable functions.

Mohammed Yahdi (1998)

Revista Matemática Complutense

Similarity:

Let C(X) be the set of all convex and continuous functions on a separable infinite dimensional Banach space X, equipped with the topology of uniform convergence on bounded subsets of X. We show that the subset of all convex Fréchet-differentiable functions on X, and the subset of all (not necessarily equivalent) Fréchet-differentiable norms on X, reduce every coanalytic set, in particular they are not Borel-sets.

Inductive duals of distinguished frechet spaces

José Bonet, Susanne Dierolf (1996)

Revista de la Real Academia de Ciencias Exactas Físicas y Naturales

Similarity:

The purpose of this note is to give an example of a distinguished Fréchet space and a non-distinguished Fréchet space which have the same inductive dual. Accordingly, distinguishedness is a property which is not reflected in the inductive dual. In contrast to this example, it was known that the properties of being quasinormable or having the density condition can be characterized in terms of the inductive dual of a Fréchet space.