Fréchet spaces of continuous vector-valued functions: Complementability in dual Fréchet spaces and injectivity
Studia Mathematica (1992)
- Volume: 102, Issue: 3, page 257-267
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topDomański, P., and Drewnowski, L.. "Fréchet spaces of continuous vector-valued functions: Complementability in dual Fréchet spaces and injectivity." Studia Mathematica 102.3 (1992): 257-267. <http://eudml.org/doc/215927>.
@article{Domański1992,
abstract = {Fréchet spaces of strongly, weakly and weak*-continuous Fréchet space valued functions are considered. Complete solutions are given to the problems of their injectivity or embeddability as complemented subspaces in dual Fréchet spaces.},
author = {Domański, P., Drewnowski, L.},
journal = {Studia Mathematica},
keywords = {Fréchet spaces of (weakly, weak*) continuous vector-valued functions injective Fréchet spaces; spaces complemented in dual Fréchet spaces; complemented copies of $c_0$; Josefson-Nissenzweig theorem; complemented copies of ; Fréchet spaces of strongly, weakly and weak*-continuous Fréchet space valued functions; injectivity; embeddability; complemented subspaces in dual Fréchet spaces},
language = {eng},
number = {3},
pages = {257-267},
title = {Fréchet spaces of continuous vector-valued functions: Complementability in dual Fréchet spaces and injectivity},
url = {http://eudml.org/doc/215927},
volume = {102},
year = {1992},
}
TY - JOUR
AU - Domański, P.
AU - Drewnowski, L.
TI - Fréchet spaces of continuous vector-valued functions: Complementability in dual Fréchet spaces and injectivity
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 3
SP - 257
EP - 267
AB - Fréchet spaces of strongly, weakly and weak*-continuous Fréchet space valued functions are considered. Complete solutions are given to the problems of their injectivity or embeddability as complemented subspaces in dual Fréchet spaces.
LA - eng
KW - Fréchet spaces of (weakly, weak*) continuous vector-valued functions injective Fréchet spaces; spaces complemented in dual Fréchet spaces; complemented copies of $c_0$; Josefson-Nissenzweig theorem; complemented copies of ; Fréchet spaces of strongly, weakly and weak*-continuous Fréchet space valued functions; injectivity; embeddability; complemented subspaces in dual Fréchet spaces
UR - http://eudml.org/doc/215927
ER -
References
top- [1] S. F. Bellenot and E. Dubinsky, Fréchet spaces with nuclear Köthe quotients, Trans. Amer. Math. Soc. 273 (1982), 579-591. Zbl0494.46001
- [2] J. Bonet, M. Lindström and M. Valdivia, Two theorems of Josefson-Nissenzweig type for Fréchet spaces, preprint, 1991. Zbl0785.46002
- [3] M. Cambern and P. Greim, The bidual of C(X,E), Proc. Amer. Math. Soc. 85 (1982), 53-58. Zbl0487.46017
- [4] M. Cambern and P. Greim, The dual of a space of vector measures, Math. Z. 180 (1982), 373-378. Zbl0471.46016
- [5] M. Cambern and P. Greim, Uniqueness of preduals for spaces of continuous vector functions, Canad. Math. Bull. 31 (1988), 98-103. Zbl0683.46023
- [6] P. Cembranos, C(K,E) contains a complemented copy of , Proc. Amer. Math. Soc. 91 (1984), 556-558.
- [7] S. Dierolf and D. N. Zarnadze, A note on strictly regular Fréchet spaces, Arch. Math. (Basel) 42 (1984), 549-556. Zbl0525.46004
- [8] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York 1984.
- [9] P. Domański, -Spaces and injective locally convex spaces, Dissertationes Math. 298 (1990).
- [10] P. Domański and L. Drewnowski, Uncomplementability of the spaces of norm continuous functions in some spaces of "weakly" continuous functions, Studia Math. 97 (1991), 245-251. Zbl0736.46026
- [11] P. Domański and A. Ortyński, Complemented subspaces of products of Banach spaces, Trans. Amer. Math. Soc. 316 (1989), 215-231. Zbl0693.46017
- [12] G. Emmanuele, A dual characterization of Banach spaces not containing l₁, Bull. Polish Acad. Sci. Math. 34 (1986), 155-159. Zbl0625.46026
- [13] R. Engelking, General Topology, Monograf. Mat. 60, PWN, Warszawa 1977.
- [14] F. J. Freniche, Barrelledness of the space of vector-valued and simple functions, Math. Ann. 267 (1984), 479-486. Zbl0525.46022
- [15] H. Jarchow, Locally Convex Spaces, Birkhäuser, Stuttgart 1980.
- [16] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. Zbl0266.47038
- [17] G. Metafune and V. B. Moscatelli, Complemented subspaces of sums and products of Banach spaces, Ann. Mat. Pura Appl. 159 (1988), 175-190. Zbl0684.46026
- [18] G. Metafune and V. B. Moscatelli, Quojections and prequojections, in: Proc. NATO-ASI Workshop on Fréchet spaces, Istanbul, August 1988, T. Terzioğlu (ed.), Kluwer, Dordrecht 1989, 235-254.
- [19] A. Pełczyński, Some aspects of the present theory of Banach spaces, in: S. Banach, Oeuvres, Vol. II, PWN, Warszawa 1979, 218-302.
- [20] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, Elsevier/Ńorth-Holland, Amsterdam 1987. Zbl0614.46001
- [21] H. H. Schaefer, Topological Vector Spaces, Springer, Berlin 1973.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.