Displaying similar documents to “Null spaces and ranges of polynomials of operators.”

Strictly singular operators and the invariant subspace problem

C. Read (1999)

Studia Mathematica

Similarity:

Properties of strictly singular operators have recently become of topical interest because the work of Gowers and Maurey in [GM1] and [GM2] gives (among many other brilliant and surprising results, such as those in [G1] and [G2]) Banach spaces on which every continuous operator is of form λ I + S, where S is strictly singular. So if strictly singular operators had invariant subspaces, such spaces would have the property that all operators on them had invariant subspaces. However, in...

Rota-Baxter operators and Bernoulli polynomials

Vsevolod Gubarev (2021)

Communications in Mathematics

Similarity:

We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.

On unbounded hyponormal operators III

J. Janas (1994)

Studia Mathematica

Similarity:

The paper deals mostly with spectral properties of unbounded hyponormal operators. Some nontrivial examples of such operators are given.