Global stability of sets for systems with impulses.
G. K. Kulev, D. D. Bainov (1987)
Collectanea Mathematica
Similarity:
G. K. Kulev, D. D. Bainov (1987)
Collectanea Mathematica
Similarity:
Drumi Dimitrov Bajnov, Ivanka M. Stamova (1999)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
Boulbaba Ghanmi, Mohsen Dlala, Mohamed Ali Hammami (2018)
Kybernetika
Similarity:
The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main...
J. Dugundji (1962)
Annales Polonici Mathematici
Similarity:
S. G. Hristova, D. D. Bainov (1988)
Annales Polonici Mathematici
Similarity:
Kaymakçalan, Billûr (1993)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Liu, Kaien, Yang, Guowei (2008)
Journal of Inequalities and Applications [electronic only]
Similarity:
D. D. Bainov, S. I. Kostadinov, A. D. Myshkis (1990)
Publicacions Matemàtiques
Similarity:
By means of Schauder's fixed point theorem sufficient conditions for asymptotic equivalence of impulsive equations in a Banach space are found.
Myshkis, Anatoly D. (1995)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Sivasundaram, S., Vassilyev, S. (2000)
Journal of Applied Mathematics and Stochastic Analysis
Similarity: