Displaying similar documents to “Weighted ergodic theorems for weakly mixing transformation groups.”

Weak almost periodicity of L 1 contractions and coboundaries of non-singular transformations

Isaac Kornfeld, Michael Lin (2000)

Studia Mathematica

Similarity:

It is well known that a weakly almost periodic operator T in a Banach space is mean ergodic, and in the complex case, also λT is mean ergodic for every |λ|=1. We prove that a positive contraction on L 1 is weakly almost periodic if (and only if) it is mean ergodic. An example shows that without positivity the result is false. In order to construct a contraction T on a complex L 1 such that λT is mean ergodic whenever |λ|=1, but T is not weakly almost periodic, we prove the following: Let...

On weakly mixing and doubly ergodic nonsingular actions

Sarah Iams, Brian Katz, Cesar E. Silva, Brian Street, Kirsten Wickelgren (2005)

Colloquium Mathematicae

Similarity:

We study weak mixing and double ergodicity for nonsingular actions of locally compact Polish abelian groups. We show that if T is a nonsingular action of G, then T is weakly mixing if and only if for all cocompact subgroups A of G the action of T restricted to A is weakly mixing. We show that a doubly ergodic nonsingular action is weakly mixing and construct an infinite measure-preserving flow that is weakly mixing but not doubly ergodic. We also construct an infinite measure-preserving...

Conjugacies between ergodic transformations and their inverses

Geoffrey Goodson (2000)

Colloquium Mathematicae

Similarity:

We study certain symmetries that arise when automorphisms S and T defined on a Lebesgue probability space (X, ℱ, μ) satisfy the equation S T = T - 1 S . In an earlier paper [6] it was shown that this puts certain constraints on the spectrum of T. Here we show that it also forces constraints on the spectrum of S 2 . In particular, S 2 has to have a multiplicity function which only takes even values on the orthogonal complement of the subspace f L 2 ( X , , μ ) : f ( T 2 x ) = f ( x ) . For S and T ergodic satisfying this equation further constraints...

Bergelson's theorem for weakly mixing C*-dynamical systems

Rocco Duvenhage (2009)

Studia Mathematica

Similarity:

We study a nonconventional ergodic average for asymptotically abelian weakly mixing C*-dynamical systems, related to a second iteration of Khinchin's recurrence theorem obtained by Bergelson in the measure-theoretic case. A noncommutative recurrence theorem for such systems is obtained as a corollary.

On new spectral multiplicities for ergodic maps

Alexandre I. Danilenko (2010)

Studia Mathematica

Similarity:

It is shown that each subset of positive integers that contains 2 is realizable as the set of essential values of the multiplicity function for the Koopman operator of some weakly mixing transformation.

Infinite ergodic index d -actions in infinite measure

E. Muehlegger, A. Raich, C. Silva, M. Touloumtzis, B. Narasimhan, W. Zhao (1999)

Colloquium Mathematicae

Similarity:

We construct infinite measure preserving and nonsingular rank one d -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving d -actions; for these we show that the individual basis transformations have conservative...

Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations

Ryotaro Sato (1995)

Studia Mathematica

Similarity:

Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average n - 1 i = 0 n - 1 f τ i ( x ) converges almost everywhere to a function f* in L ( p 1 , q 1 ] , where (pq) and ( p 1 , q 1 ] are assumed to be in the set ( r , s ) : r = s = 1 , o r 1 < r < a n d 1 s , o r r = s = . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...