Localization and cohomology of nilpotent groups
Peter Hilton (1973)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Peter Hilton (1973)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Hilton, Peter, Militello, Robert (1996)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Patrizia Longobardi, Mercede Maj, Howard Smith (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Hilton, P. J., Witbooi, P. J. (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Hilton, Peter (2001)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Peter Hilton, Dirk Scevenels (1997)
Publicacions Matemàtiques
Similarity:
We study the realizability of finite abelian groups as Mislin genera of finitely generated nilpotent groups with finite commutator subgroup. In particular, we give criteria to decide whether a finite abelian group is realizable as the Mislin genus of a direct product of nilpotent groups of a certain specified type. In the case of a positive answer, we also give an effective way of realizing that abelian group as a genus. Further, we obtain some non-realizability results.
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
Similarity:
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...
Geok Choo Tan (1997)
Publicacions Matemàtiques
Similarity:
Let P be an arbitrary set of primes. The P-nilpotent completion of a group G is defined by the group homomorphism η: G → G where G = inv lim(G/ΓG). Here ΓG is the commutator subgroup [G,G] and ΓG the subgroup [G, ΓG] when i > 2. In this paper, we prove that P-nilpotent completion of an infinitely generated free group F does not induce an isomorphism on the first homology group with Z coefficients. Hence, P-nilpotent completion is not idempotent. Another important consequence of...
Berthold J. Maier (1984)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Delizia, Costantino, Nicotera, Chiara (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity: