Displaying similar documents to “Virtually repelling fixed point.”

A semi-discrete Littlewood-Paley inequality

J. M. Wilson (2002)

Studia Mathematica

Similarity:

We apply a decomposition lemma of Uchiyama and results of the author to obtain good weighted Littlewood-Paley estimates for linear sums of functions satisfying reasonable decay, smoothness, and cancellation conditions. The heart of our application is a combinatorial trick treating m-fold dilates of dyadic cubes. We use our estimates to obtain new weighted inequalities for Bergman-type spaces defined on upper half-spaces in one and two parameters, extending earlier work of R. L. Wheeden...

Norm inequalities for potential-type operators.

Sagun Chanillo, Jan-Olov Strömberg, Richard L. Wheeden (1987)

Revista Matemática Iberoamericana

Similarity:

The purpose of this paper is to derive norm inequalities for potentials of the form Tf(x) = ∫(Rn) f(y)K(x,y)dy,     x ∈ Rn, when K is a Kernel which satisfies estimates like those that hold for the Green function associated with the degenerate elliptic equations studied in [3] and [4].

Weighted Bergman projections and tangential area integrals

William Cohn (1993)

Studia Mathematica

Similarity:

Let Ω be a bounded strictly pseudoconvex domain in . In this paper we find sufficient conditions on a function f defined on Ω in order that the weighted Bergman projection belong to the Hardy-Sobolev space . The conditions on f we consider are formulated in terms of tent spaces and complex tangential vector fields. If f is holomorphic then these conditions are necessary and sufficient in order that f belong to the Hardy-Sobolev space .

First and second order Opial inequalities

Steven Bloom (1997)

Studia Mathematica

Similarity:

Let , where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form . Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent . When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold. ...

A stability result on Muckenhoupt's weights.

Juha Kinnunen (1998)

Publicacions Matemàtiques

Similarity:

We prove that Muckenhoupt's A-weights satisfy a reverse Hölder inequality with an explicit and asymptotically sharp estimate for the exponent. As a by-product we get a new characterization of A-weights.