The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Linear distortion of Hausdorff dimension and Cantor's function.”

On the Moser-Onofri and Prékopa-Leindler inequalities.

Alessandro Ghigi (2005)

Collectanea Mathematica

Similarity:

Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that 1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0 for any funcion φ ∈ C(S2).