Two-dimensional real division algebras revisited.
Hübner, Marion, Petersson, Holger P. (2004)
Beiträge zur Algebra und Geometrie
Similarity:
Hübner, Marion, Petersson, Holger P. (2004)
Beiträge zur Algebra und Geometrie
Similarity:
L. Torkzadeh, M. M. Zahedi (2006)
Mathware and Soft Computing
Similarity:
In this note we classify the bounded hyper K-algebras of order 3, which have D = {1}, D = {1,2} and D = {0,1} as a dual commutative hyper K-ideal of type 1. In this regard we show that there are such non-isomorphic bounded hyper K-algebras.
Jerzy Białkowski (2004)
Open Mathematics
Similarity:
Flaut, Cristina (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
J. Monk (1993)
Banach Center Publications
Similarity:
Yosuke Ohnuki, Kaoru Takeda, Kunio Yamagata (1999)
Colloquium Mathematicae
Similarity:
By an extension algebra of a finite-dimensional K-algebra A we mean a Hochschild extension algebra of A by the dual A-bimodule . We study the problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra A= KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a 2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of...
Ethier, Dillon, Lindberg, Tova, Luttman, Aaron (2010)
Annals of Functional Analysis (AFA) [electronic only]
Similarity:
Casas, J. M., Ladra, M. (2002)
Georgian Mathematical Journal
Similarity:
Zbigniew Leszczyński (1994)
Fundamenta Mathematicae
Similarity:
The representation type of tensor product algebras of finite-dimensional algebras is considered. The characterization of algebras A, B such that A ⊗ B is of tame representation type is given in terms of the Gabriel quivers of the algebras A, B.
Martynov, L.M. (2001)
Siberian Mathematical Journal
Similarity:
Juhász, Tibor (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
A. L. Barrenechea, C. C. Pena (2005)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity: