On the representation type of tensor product algebras

Zbigniew Leszczyński

Fundamenta Mathematicae (1994)

  • Volume: 144, Issue: 2, page 143-161
  • ISSN: 0016-2736

Abstract

top
The representation type of tensor product algebras of finite-dimensional algebras is considered. The characterization of algebras A, B such that A ⊗ B is of tame representation type is given in terms of the Gabriel quivers of the algebras A, B.

How to cite

top

Leszczyński, Zbigniew. "On the representation type of tensor product algebras." Fundamenta Mathematicae 144.2 (1994): 143-161. <http://eudml.org/doc/212020>.

@article{Leszczyński1994,
abstract = {The representation type of tensor product algebras of finite-dimensional algebras is considered. The characterization of algebras A, B such that A ⊗ B is of tame representation type is given in terms of the Gabriel quivers of the algebras A, B.},
author = {Leszczyński, Zbigniew},
journal = {Fundamenta Mathematicae},
keywords = {representation type of tensor product algebras; finite-dimensional basic connected -algebras; quivers with relations; algebra of lower triangular matrices; simply connected algebras; weakly sincere simply connected algebras; tame group algebras; tame triangular matrix algebras; Nakayama algebras},
language = {eng},
number = {2},
pages = {143-161},
title = {On the representation type of tensor product algebras},
url = {http://eudml.org/doc/212020},
volume = {144},
year = {1994},
}

TY - JOUR
AU - Leszczyński, Zbigniew
TI - On the representation type of tensor product algebras
JO - Fundamenta Mathematicae
PY - 1994
VL - 144
IS - 2
SP - 143
EP - 161
AB - The representation type of tensor product algebras of finite-dimensional algebras is considered. The characterization of algebras A, B such that A ⊗ B is of tame representation type is given in terms of the Gabriel quivers of the algebras A, B.
LA - eng
KW - representation type of tensor product algebras; finite-dimensional basic connected -algebras; quivers with relations; algebra of lower triangular matrices; simply connected algebras; weakly sincere simply connected algebras; tame group algebras; tame triangular matrix algebras; Nakayama algebras
UR - http://eudml.org/doc/212020
ER -

References

top
  1. [AS] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450. Zbl0617.16018
  2. [AR] M. Auslander and I. Reiten, On the representation type of triangular matrix rings, J. London Math. Soc. (2) 12 (1976), 371-382. 
  3. [BD] V. M. Bondarenko and Yu. A. Drozd, The representation type of finite groups, in: Modules and Representations, Zap. Nauchn. Sem. LOMI 57 (1977), 24-41 (in Russian). Zbl0429.16026
  4. [Br1] S. Brenner, Large indecomposable modules over a ring of 2 × 2 triangular matrices, Bull. London Math. Soc. 3 (1971), 333-336. Zbl0223.16012
  5. [Br2] S. Brenner, On two questions of M. Auslander, ibid. 4 (1972), 301-302. Zbl0261.16015
  6. [DR] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976). 
  7. [DLS] P. Dowbor, H. Lenzing and A. Skowroński, Galois coverings of algebras by locally support-finite categories, in: Lecture Notes in Math. 1177, Springer, 1986, 41-93. Zbl0626.16009
  8. [DS1] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529. Zbl0576.16029
  9. [DS2] P. Dowbor and A. Skowroński, On the representation type of locally bounded categories, Tsukuba J. Math. 10 (1986), 63-72. Zbl0604.16024
  10. [D] Yu. A. Drozd, On tame and wild matrix problems, in: Matrix Problems, Izdat. Inst. Mat. AN USSR, Kiev, 1977, 104-114. 
  11. [FGR] R. Fossum, Ph. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Lecture Notes in Math. 456, Springer, 1975. 
  12. [G1] P. Gabriel, Indecomposable representations I, Manuscripta Math. 6 (1972), 71-109. 
  13. [G2] P. Gabriel, Indecomposable representations II, Symposia Math. 11 (1973), 61-104. 
  14. [G3] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, 1980, 1-71. 
  15. [G4] P. Gabriel, The universal covering of a representation-finite algebra, in: Proc. Third Conf. on Representations of Algebras, Puebla, Lecture Notes in Math. 903, Springer, 1981, 68-105. 
  16. [HM] M. Hoshino and I. Miyachi, Tame triangular matrix algebras over self-injective algebras, Tsukuba J. Math. 11 (1987), 383-391. Zbl0639.16020
  17. [L1] Z. Leszczyński, l-hereditary triangular matrix algebras of tame type, Arch. Math. (Basel) 54 (1990), 25-31. 
  18. [L2] Z. Leszczyński, On the representation type of triangular matrix algebras over special algebras, Fund. Math. 137 (1991), 65-80. Zbl0727.16011
  19. [LS] Z. Leszczyński and D. Simson, On the triangular matrix rings of finite type, J. London Math. Soc. (2) 20 (1979), 396-402. Zbl0434.16022
  20. [LSk] Z. Leszczyński and A. Skowroński, Triangular matrix algebras of tame type, to appear. Zbl0978.16014
  21. [MS] H. Meltzer and A. Skowroński, Group algebras of finite representation type, Math. Z. 182 (1983), 129-148. Zbl0504.16006
  22. [R] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  23. [S1] A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516. Zbl0627.16007
  24. [S2] A. Skowroński, Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc. 34 (1986), 245-264. Zbl0606.16021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.