The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Basis of homology adapted to the trigonal automorphism of a Riemann surface.”

On ovals on Riemann surfaces.

Grzegorz Gromadzki (2000)

Revista Matemática Iberoamericana

Similarity:

We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.

On the family of cyclic trigonal Riemann surfaces of genus 4 with several trigonal morphisms.

Antonio F. Costa, Milagros Izquierdo, Daniel Ying (2007)

RACSAM

Similarity:

A closed Riemann surface which is a 3-sheeted regular covering of the Riemann sphere is called cyclic trigonal, and such a covering is called a cyclic trigonal morphism. Accola showed that if the genus is greater or equal than 5 the trigonal morphism is unique. Costa-Izquierdo-Ying found a family of cyclic trigonal Riemann surfaces of genus 4 with two trigonal morphisms. In this work we show that this family is the Riemann sphere without three points. We also prove that the Hurwitz space...

On pq-hyperelliptic Riemann surfaces

Ewa Tyszkowska (2005)

Colloquium Mathematicae

Similarity:

A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ϱ, called a p-hyperelliptic involution, for which X/ϱ is an orbifold of genus p. If in addition X admits a q-hypereliptic involution then we say that X is pq-hyperelliptic. We give a necessary and sufficient condition on p,q and g for existence of a pq-hyperelliptic Riemann surface of genus g. Moreover we give some conditions under which p- and q-hyperelliptic involutions of...

A family of M-surfaces whose automorphism groups act transitively on the mirrors.

Adnan Melekoglu (2000)

Revista Matemática Complutense

Similarity:

Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces...

Automorphisms of Riemann surfaces with two fixed points

Tomasz Szemberg (1991)

Annales Polonici Mathematici

Similarity:

We give an upper bound for the order of an automorphism of a Riemann surface with two fixed points. The main results are presented in Theorems 1.4 and 2.4.